TICA解读:AI智能体与大数据构造在智能测试领域的运用

本文涉及的产品
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
简介: 导读:各位小伙伴,TICA2022已于2022年12月15日圆满落幕。想必大家还畅游在知识的海洋里无法自拔吧?应大家要求,小编将为大家深入解读一些Topic。本次给大家带来的Topic,是由又仁老师在大会中分享的“AI智能体与大数据构造在智能测试领域的运用”。

议题背景介绍


随着人工智能技术的普及,越来越多基于AI能力的产品、服务被推出市场,形成横向以场景驱动、纵向以AI原子能力驱动的综合布局。然而,与AI市场快速爆发的猛烈态势形成对比的是对于AI系统质量的保障手段及方法论依然处于边探索边前进的状态。本次又仁老师的分享聚焦于AI语音系统的质量保证体系方法论,从大规模数据采样、构造到智能体实现运用等视角切入,为基于AI语音能力的相关质量保障工作提供思路,分享可运用于工程实践的相关方法&手段。

智能系统的现状及挑战


在过去5-10年,随着技术端的不断发展,智能系统也得到快速的发展。智能系统由数据、硬件、工程以及算法组成,其中算法在智能系统里有着不可撼动的位置,从云端链路、终端测试、模型评测、工程封装等环节,不难看出智能系统有着链路长、不可解释性、场景复杂、数据要求高等特点。

image.png那么现有情况下,存在哪些挑战呢?以智能音箱为例,现在的语音识别产品在厂商的智能家居规划蓝图中是扮演一个人与机器交流的桥梁,那在实际应用中就要求音箱能够听得到人说的话,同时还要求它听得清晰和听得准。这就提出了第一个挑战——信噪比。所谓信噪比,就是目标信号与干扰信号强度比值的对数,我们需要一定的信噪比,才能让机器听得清楚。但根据声音的传播特性,它在空气中衰减会非常大,但人在与智能音箱交流的过程中,可能会处在不同的位置和距离。这就给智能发展提出了一个难题,同时也是语音识别所面临的最大挑战。第二个挑战是非稳态的噪声影响。如果我们面对的是规律的噪声,应对的办法无疑会简单很多。但在实际的使用环境中,我们经常会面对的是带有突发性和不可预见性的噪音,这也给智能领域的发展带来了不小的挑战。第三是多声源的问题。智能音箱在使用的过程中,只会听从一个声源的指令,但在人机交流的过程中,必然会出现干扰源。如何处理这个干扰的问题,也困扰着相关开发者和智能测试人员。基于这些业务开发挑战,智能系统的 测试挑战在数据准备、模型选型、模型训练、模型评测、工程部署等五大方面也反映出了几大难题:测试场景复杂、评测数据缺乏、依赖人力投入。其中模型评测时开发和测试会在研发流程上存在一定重合,所以都需要进行模型效果评测,这个时候团队内的信任将会大大提高覆盖率和智能化效率。


image.png

随着智能系统测试的不断发展,我们根据不同的分级标准也划分出了一个智能测试能力等级,根据这个等级即可判断出智能测试领域的发展情况及不足。

image.png

智能测试探索实践之路

基于前期智能测试的挑战,同时为了提高智能测试能力等级,又仁老师开始思考如何让智能系统更加智能呢?先从多场景开始头脑风暴,接着进行非结构化大数据的模拟构造。就是这样一个出发点形成了现在完整的智能测试架构:从智能数据采集加工、多元化场景构造、智能测试自动化到智能智测中心的系统架构我们不难看出智能测试的核心是什么:大数据+智能体+自动化。

image.png

测试大数据是智能测试中最开始的一环,数据的质量往往影响着智能测试的质量。将多元化的数据源整合在一起形成完整的数据流为我们的智能测试打下了很好的数据基础。

image.png

基于不同的能力将智能体大致分为三类:单一小模型、视觉语音中模型、多模态智能系统。不同类型意味着他们的通用性和专用性有很大的不同,在不同场景下选择合适的智能体将大大促进智能系统的智能化。

image.png

端到端评测、工程测试、模型评测组成了智能测试架构中的自动化场景,这三种模型在并发能力、人力方面各不相同,有利有弊,在智能化场景测试中选择合适的场景来进行测试能达到事半功倍的效果。自动化流程中需要特别注意:模型部署、工程调用、端侧发布等环节,每一步的失误都会导致智能测试不那么智能。

image.png

image.png



相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
8天前
|
数据采集 人工智能 分布式计算
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
阿里云推出的MaxFrame是链接大数据与AI的分布式Python计算框架,提供类似Pandas的操作接口和分布式处理能力。本文从部署、功能验证到实际场景全面评测MaxFrame,涵盖分布式Pandas操作、大语言模型数据预处理及企业级应用。结果显示,MaxFrame在处理大规模数据时性能显著提升,代码兼容性强,适合从数据清洗到训练数据生成的全链路场景...
25 5
MaxFrame:链接大数据与AI的高效分布式计算框架深度评测与实践!
|
3天前
|
人工智能 分布式计算 DataWorks
大数据& AI 产品月刊【2024年12月】
大数据& AI 产品技术月刊【2024年12月】,涵盖本月技术速递、产品和功能发布、市场和客户应用实践等内容,帮助您快速了解阿里云大数据& AI 方面最新动态。
|
29天前
|
机器学习/深度学习 人工智能 自然语言处理
Gemini 2.0:谷歌推出的原生多模态输入输出 + Agent 为核心的 AI 模型
谷歌最新推出的Gemini 2.0是一款原生多模态输入输出的AI模型,以Agent技术为核心,支持多种数据类型的输入与输出,具备强大的性能和多语言音频输出能力。本文将详细介绍Gemini 2.0的主要功能、技术原理及其在多个领域的应用场景。
150 20
Gemini 2.0:谷歌推出的原生多模态输入输出 + Agent 为核心的 AI 模型
|
15天前
|
存储 人工智能 数据管理
|
29天前
|
人工智能 API 语音技术
TEN Agent:开源的实时多模态 AI 代理框架,支持语音、文本和图像的实时通信交互
TEN Agent 是一个开源的实时多模态 AI 代理框架,集成了 OpenAI Realtime API 和 RTC 技术,支持语音、文本和图像的多模态交互,具备实时通信、模块化设计和多语言支持等功能,适用于智能客服、实时语音助手等多种场景。
151 15
TEN Agent:开源的实时多模态 AI 代理框架,支持语音、文本和图像的实时通信交互
|
30天前
|
人工智能 自然语言处理 前端开发
Director:构建视频智能体的 AI 框架,用自然语言执行搜索、编辑、合成和生成等复杂视频任务
Director 是一个构建视频智能体的 AI 框架,用户可以通过自然语言命令执行复杂的视频任务,如搜索、编辑、合成和生成视频内容。该框架基于 VideoDB 的“视频即数据”基础设施,集成了多个预构建的视频代理和 AI API,支持高度定制化,适用于开发者和创作者。
96 9
Director:构建视频智能体的 AI 框架,用自然语言执行搜索、编辑、合成和生成等复杂视频任务
|
26天前
|
机器学习/深度学习 人工智能 算法
Meta Motivo:Meta 推出能够控制数字智能体动作的 AI 模型,提升元宇宙互动体验的真实性
Meta Motivo 是 Meta 公司推出的 AI 模型,旨在控制数字智能体的全身动作,提升元宇宙体验的真实性。该模型通过无监督强化学习算法,能够实现零样本学习、行为模仿与生成、多任务泛化等功能,适用于机器人控制、虚拟助手、游戏角色动画等多个应用场景。
57 4
Meta Motivo:Meta 推出能够控制数字智能体动作的 AI 模型,提升元宇宙互动体验的真实性
|
10天前
|
人工智能 分布式计算 数据处理
MaxCompute Data + AI:构建 Data + AI 的一体化数智融合
本次分享将分为四个部分讲解:第一部分探讨AI时代数据开发范式的演变,特别是MaxCompute自研大数据平台在客户工作负载和任务类型变化下的影响。第二部分介绍MaxCompute在资源大数据平台上构建的Data + AI核心能力,提供一站式开发体验和流程。第三部分展示MaxCompute Data + AI的一站式开发体验,涵盖多模态数据管理、交互式开发环境及模型训练与部署。第四部分分享成功落地的客户案例及其收益,包括互联网公司和大模型训练客户的实践,展示了MaxFrame带来的显著性能提升和开发效率改进。
|
8天前
|
存储 人工智能 数据管理
媒体声音|专访阿里云数据库周文超博士:AI就绪的智能数据平台设计思路
在生成式AI的浪潮中,数据的重要性日益凸显。大模型在实际业务场景的落地过程中,必须有海量数据的支撑:经过训练、推理和分析等一系列复杂的数据处理过程,才能最终产生业务价值。事实上,大模型本身就是数据处理后的产物,以数据驱动的决策与创新需要通过更智能的平台解决数据多模处理、实时分析等问题,这正是以阿里云为代表的企业推动 “Data+AI”融合战略的核心动因。
|
20天前
|
数据采集 人工智能 分布式计算
探索 MaxCompute MaxFrame:AI 数据预处理的高效之选
探索 MaxCompute MaxFrame:AI 数据预处理的高效之选