【微电网】基于风光储能和需求响应的微电网日前经济调度(Python代码实现)

简介: 【微电网】基于风光储能和需求响应的微电网日前经济调度(Python代码实现)

 目录

1 概述

2 知识点及数学模型

3 算例实现

3.1算例介绍

3.2风光参与的模型求解

3.3 风光和储能参与的模型求解

3.5 风光储能和需求响应都参与模型求解

3.6 结果分析对比

4 Python代码及算例数据


1 概述

近年来,微电网、清洁能源等已成为全球关注的热点。清洁能源在我国可持续发展战略中具有日益重要的地位,政府、企业、学术界均在清洁能源技术及其评价上做了大量工作[1]。

微电网(Micro-Grid)日前经济调度问题是指考虑电网的分时电价基础上,对常规负荷、光伏出力、风机出力进行日前(未来 24 小时)预测,然后充分利用微网中的储能等可调控手段,使微电网运行的经济性最优[2-5]。

需求响应是电力需求侧管理在电力市场中的最新发展[6]。

众多学者对此做了大量研究,文献[7]在考虑电价与负荷响应量相关性的基础上,建立了以运行成本最低、可再生能源消纳比例最高和用户满意度最好为目标的日前调度模型。文献[8]考虑风电功率以及可再生能源停运的不确定性,提出一种考虑风险的微电网日前随机优化调度方法。文献[9]以运行成本最小为优化目标、同时考虑储能,提出了一种微电网日前调度调度模型。文献[10]针对微电网新能源出力不确定的问题,提出了考虑电价激励需求响应下微电网日前优化调度方法。文献[11]以提高供电可靠性和能源利润为目的,构建考虑激励型DR和电池储能的优化模型,算例分析了激励型DR和电池储能对微网可靠性与盈利能力的影响。

本文以微电网风光、储能、与主网交换成本、需求侧响应成本为目标函数,考虑功率平衡约束、设备约束以及系统规划约束条件对此微电网进行优化调度,并通过峰值消减指数、可再生能源消纳率以及用户舒适度三个需求侧响应指标来量化需求侧响应效益。在允许微电网与主网进行功率交互的前提下,研究了微电网在不同情况下的调度方法。最后,通过实际算例分析了各种情况下的微电网经济优化及峰谷差最小运行方案。

 

2 知识点及数学模型

基于风光储能和需求响应的微电网日前经济调度(Python代码实现)【0】

http://t.csdn.cn/HhgWG

3 算例实现

3.1算例介绍

一个含有风机、光伏、蓄电池以及负荷的微电网系统见示意图3.1。

image.gif

风机的装机容量360kW,单位运维成本0.52元/kWh。光伏的装机容量 260kW,单位运维成本0.75元/kWh。蓄电池额定容量为700kWh,电池 SOC 运行范围 为[0.4,0.9],初始 SOC 值为 0.4,由充电至放电成本为 0.1 元/kWh,1个小时充放电功率最大为储能的20%。微网与主网允许交换功率不超过 200kW。一天的售电和购电价格见表1。

image.gif

风机出力、光伏出力、常规负荷日前(未来 24 小时)预测见图2,新能源预测出力和净负荷,净负荷表示的是风机、光伏满足负荷后的剩余功率,如图3所示。

image.gif        image.gif

3.2风光参与的模型求解

在无风光情况下:微电网所需功率全部来自主网,功率等于负荷,在已知负荷和分时电价情况下,可以直接相乘求解。但是由图7我们可以看出,超过了微网与主网交换功率限额。

在有风光参与的情况下,由于风机功率、光伏功率、微电网与主网交换功率都是可变的,故直接相乘得不到结果,通过粒子群算法求解。

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

3.3 风光和储能参与的模型求解

要尽量满足用户负荷需求要,我们考虑未满足负荷用电量和,并与系统运行成本取权重作为新的目标函数。

通过制定策略:风力发电成本最低,所以对于可再生能源发电,优先发风机。然后我们采用允许弃风、弃光的方法,得到可再生能源的最优出力后,若较负荷所需功率不足,则由主网供电。还对风、光、储能和主网出力越限做了惩罚项处理。

3.4 风光和需求响应参与模型求解

对于需求响应参与的模型,我们先对负荷进行K-Means聚类算法,把负荷分为高峰、平段、低谷三个时段,如表2所示。通过1.4.1节的基于价格型需求策略得到需求响应后的负荷image.gif编辑,然后在调度时段内再采用激励型需求响应直接控制方式进行负荷转移,并给予补偿。

这里的出力策略和风光和储能参与的模型求解的策略方法一样,把储能出力换成可转入转出负荷。

image.gif

3.5 风光储能和需求响应都参与模型求解

通过把3.3节和3.4节结合起来,得到如下风光储能和需求响应都参与模型

3.6 结果分析对比

            image.gif

                   image.gif

                image.gif

                image.gif

image.gif

由图7-12可以看出,当只有风光参与供电的模型负荷缺额量很大,当加入储能后负荷缺额量降低了很多。在只考虑风光和需求响应时【电价型】可以很明显的看出,很好的起到了消峰填谷的作用。在风光储能和需求响应都参与的模型中,各方面的效果都有很大改善,如表3-7所示。

4 Python代码及算例数据

image.gif

链接:https://pan.baidu.com/s/19TZ8WUKeYivh8mylkO6fyw 

提取码:9jll

--来自百度网盘超级会员V3的分享


相关文章
|
5天前
|
缓存 监控 测试技术
Python中的装饰器:功能扩展与代码复用的利器###
本文深入探讨了Python中装饰器的概念、实现机制及其在实际开发中的应用价值。通过生动的实例和详尽的解释,文章展示了装饰器如何增强函数功能、提升代码可读性和维护性,并鼓励读者在项目中灵活运用这一强大的语言特性。 ###
|
8天前
|
缓存 开发者 Python
探索Python中的装饰器:简化代码,增强功能
【10月更文挑战第35天】装饰器在Python中是一种强大的工具,它允许开发者在不修改原有函数代码的情况下增加额外的功能。本文旨在通过简明的语言和实际的编码示例,带领读者理解装饰器的概念、用法及其在实际编程场景中的应用,从而提升代码的可读性和复用性。
|
5天前
|
Python
探索Python中的装饰器:简化代码,提升效率
【10月更文挑战第39天】在编程的世界中,我们总是在寻找使代码更简洁、更高效的方法。Python的装饰器提供了一种强大的工具,能够让我们做到这一点。本文将深入探讨装饰器的基本概念,展示如何通过它们来增强函数的功能,同时保持代码的整洁性。我们将从基础开始,逐步深入到装饰器的高级用法,让你了解如何利用这一特性来优化你的Python代码。准备好让你的代码变得更加优雅和强大了吗?让我们开始吧!
13 1
|
10天前
|
设计模式 缓存 监控
Python中的装饰器:代码的魔法增强剂
在Python编程中,装饰器是一种强大而灵活的工具,它允许程序员在不修改函数或方法源代码的情况下增加额外的功能。本文将探讨装饰器的定义、工作原理以及如何通过自定义和标准库中的装饰器来优化代码结构和提高开发效率。通过实例演示,我们将深入了解装饰器的应用,包括日志记录、性能测量、事务处理等常见场景。此外,我们还将讨论装饰器的高级用法,如带参数的装饰器和类装饰器,为读者提供全面的装饰器使用指南。
|
5天前
|
存储 缓存 监控
掌握Python装饰器:提升代码复用性与可读性的利器
在本文中,我们将深入探讨Python装饰器的概念、工作原理以及如何有效地应用它们来增强代码的可读性和复用性。不同于传统的函数调用,装饰器提供了一种优雅的方式来修改或扩展函数的行为,而无需直接修改原始函数代码。通过实际示例和应用场景分析,本文旨在帮助读者理解装饰器的实用性,并鼓励在日常编程实践中灵活运用这一强大特性。
|
10天前
|
存储 算法 搜索推荐
Python高手必备!揭秘图(Graph)的N种风骚表示法,让你的代码瞬间高大上
在Python中,图作为重要的数据结构,广泛应用于社交网络分析、路径查找等领域。本文介绍四种图的表示方法:邻接矩阵、邻接表、边列表和邻接集。每种方法都有其特点和适用场景,掌握它们能提升代码效率和可读性,让你在项目中脱颖而出。
24 5
|
8天前
|
机器学习/深度学习 数据采集 人工智能
探索机器学习:从理论到Python代码实践
【10月更文挑战第36天】本文将深入浅出地介绍机器学习的基本概念、主要算法及其在Python中的实现。我们将通过实际案例,展示如何使用scikit-learn库进行数据预处理、模型选择和参数调优。无论你是初学者还是有一定基础的开发者,都能从中获得启发和实践指导。
18 2
|
10天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
26 4
|
11天前
|
缓存 开发者 Python
探索Python中的装饰器:简化和增强你的代码
【10月更文挑战第32天】 在编程的世界中,简洁和效率是永恒的追求。Python提供了一种强大工具——装饰器,它允许我们以声明式的方式修改函数的行为。本文将深入探讨装饰器的概念、用法及其在实际应用中的优势。通过实际代码示例,我们不仅理解装饰器的工作方式,还能学会如何自定义装饰器来满足特定需求。无论你是初学者还是有经验的开发者,这篇文章都将为你揭示装饰器的神秘面纱,并展示如何利用它们简化和增强你的代码库。
|
10天前
|
API 数据处理 Python
探秘Python并发新世界:asyncio库,让你的代码并发更优雅!
在Python编程中,随着网络应用和数据处理需求的增长,并发编程变得愈发重要。asyncio库作为Python 3.4及以上版本的标准库,以其简洁的API和强大的异步编程能力,成为提升性能和优化资源利用的关键工具。本文介绍了asyncio的基本概念、异步函数的定义与使用、并发控制和资源管理等核心功能,通过具体示例展示了如何高效地编写并发代码。
22 2