【微电网】并网微电网运行经济性研究(Python代码实现)

简介: 【微电网】并网微电网运行经济性研究(Python代码实现)

👨‍🎓个人主页:研学社的博客

💥💥💞💞欢迎来到本博客❤️❤️💥💥



🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。



⛳️座右铭:行百里者,半于九十。


📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Python代码、数据、详细文章讲解



💥1 概述

image.gif

在本文中,我们提出了我们的策略和算法来管理微电网中的能量,更具体地说,在考虑消费者负荷、太阳能发电和动态电价的情况下,每小时与主电网的能量交易。

该算法的主要目标是在用户负荷、太阳能发电和电价波动的情况下,优化储能系统( ESS )的运行,最大化微电网的货币效益。除了货币收益外,该算法还考虑了需要保留的最小能量,因为这对于确保微电网中关键任务操作的连续性至关重要。研究分析了两种能量管理算法的性能:1 )具有预测未来知识的模型预测控制线性规划( MPCLPF );2 )不具有未来知识的强化学习。在MPCLPF中,分析了不同的预测算法,并对最优预测算法进行了整合。下面是文章目录:

image.gif

image.gif

详细文章见第4部分。

📚2 运行结果

fig, ax = plt.subplots(1, 1, figsize = (7.5,5))

ax2 = ax.twinx()

PV_plot = ax.step(np.arange(24), df.iloc[0:24,0], 'ro-', label = "PV")

load_plot = ax.step(np.arange(24), df.iloc[0:24,1], 'b*-', label = "Load")

price_plot = ax2.step(np.arange(24), df.iloc[0:24,2], 'k.-', label = "RTP")


# Display all label in one box

plots = PV_plot + load_plot + price_plot

labels = [plot.get_label() for plot in plots]

ax.legend(plots, labels, loc = 0)

ax.set_xlabel("Hour")

ax.set_ylabel("Power (kW)")

ax2.set_ylabel("Price ($/ kWh)")


plt.show()

fig, ax = plt.subplots(3, 2, figsize = (15, 15))


ax[0, 0].step(np.arange(len(x[:,0])), x[:,0])

ax[0, 0].set_xlabel("Hour")

ax[0, 0].set_ylabel("PV (kW)")

ax[0, 1].step(np.arange(len(x[0:24,0])), x[0:24,0])

ax[0, 1].set_xlabel("Hour")

ax[0, 1].set_ylabel("PV (pu)")


ax[1, 0].step(np.arange(len(x[:,1])), x[:,1])

ax[1, 0].set_xlabel("Hour")

ax[1, 0].set_ylabel("Load (kW)")

ax[1, 1].step(np.arange(len(x[0:24,1])), x[0:24,1])

ax[1, 1].set_xlabel("Hour")

ax[1, 1].set_ylabel("Load (pu)")


ax[2, 0].step(np.arange(len(x[:,2])), x[:,2])

ax[2, 0].set_xlabel("Hour")

ax[2, 0].set_ylabel("Price ($/kWh)")

ax[2, 1].step(np.arange(len(x[0:24,2])), x[0:24,2])

ax[2, 1].set_xlabel("Hour")

ax[2, 1].set_ylabel("Price (pu)")


plt.show()

 

plt.plot(lstm.history.history["loss"], "-*", label="training")

plt.plot(lstm.history.history["val_loss"], "-o", label="validation")

plt.xticks(np.arange(0, 20, 2), np.arange(0, 20, 2))

plt.xlabel("Epoch")

plt.ylabel("MAE")

plt.legend()

plt.show()

encoder.load_weights(encoder.weights_dir)

decoder.load_weights(decoder.weights_dir)


y_train_pred, attentions = predict(x_train, y_train)

print ("Training MAE: {:.4f} pu\n".format(mae(y_train[:, :, 0], y_train_pred[:, :, 0])))


fig = plt.figure(figsize=(24, 5))

for idx, i in enumerate([0, 1000, 2000, 3000]):

 ax = fig.add_subplot(1, 4, idx+1)

 ax.plot(y_train_pred[i], "-*", label="prediction")

 ax.plot(y_train[i, :, 0], "-o", label="actual")

 ax.set_xlabel("Hour")

 ax.set_ylabel("Power (pu)")

 ax.legend(loc=2)

plt.show()

 

image.gif

plt.plot(lstm.history.history["loss"], "-*", label="training")

plt.plot(lstm.history.history["val_loss"], "-o", label="validation")

plt.xticks(np.arange(0, 20, 2), np.arange(0, 20, 2))

plt.xlabel("Epoch")

plt.ylabel("MAE")

plt.legend()

plt.show()

image.gif

 

idx = -10


num_steps_display = timesteps_in


attention = attention_weights

attention = tf.squeeze(attention["decoder_layer1_block2"][idx:idx+1], axis=0)


for head in range(0, num_heads):

 fig = plt.figure(figsize=(32,8))

 spec = gridspec.GridSpec(ncols=90, nrows=100)

 

 top_ax = fig.add_subplot(spec[0:15, 15:75])

 left_ax = fig.add_subplot(spec[25:, 0:10])

 right_ax = fig.add_subplot(spec[25:, 15:])

 

 top_ax.plot(x_train[idx, :num_steps_display, 0])

 top_ax.set_xlim([0, num_steps_display])

 top_ax.set_xticks(range(0, num_steps_display, 4))

 top_ax.set_xticklabels(range(0, num_steps_display, 4))


 left_ax.plot(decoder_input[idx, :, 0], range(0, timesteps_out))

 left_ax.set_yticks(range(0, timesteps_out, 4))

 left_ax.set_yticklabels(range(0, timesteps_out, 4))

 left_ax.invert_yaxis()


 sns.heatmap(attention[head][:, :num_steps_display], cmap="viridis", ax=right_ax)

 right_ax.set_xticks(range(0, num_steps_display, 4))

 right_ax.set_xticklabels(range(0, num_steps_display, 4))

 right_ax.set_yticks(range(0, timesteps_out, 4))

 right_ax.set_yticklabels(range(0, timesteps_out, 4))


 plt.title("Head {}".format(head+1))

 plt.show()

image.gif

def get_resultplot(SOC_list, action_list, x, start_idx, end_idx):

 hours = end_idx - start_idx

 if hours == 24:

   plt.figure(figsize = (8,7))

   plt.xticks(range(0, 24), range(1, 25))

 else:

   plt.figure(figsize = (25,5))

   plt.xticks(range(0, end_idx-start_idx, 24), range(1, end_idx-start_idx+1, 24))

 plt.step(range(0, hours), SOC_list[start_idx:end_idx], "ro-", label = "SOC")

 plt.step(range(0, hours), x[start_idx:end_idx, 2], "bs-", label = "price")

 plt.step(range(0, hours), x[start_idx:end_idx, 0], "g*-", label = "pv")

 plt.step(range(0, hours), x[start_idx:end_idx, 1], "m--", label = "load")

 plt.bar(range(0, hours), action_list[start_idx:end_idx],

         facecolor = "w", edgecolor = "k", label = "action")

 plt.ylabel("SOC/ Normalized Price")

 plt.xlabel("Hour")

 plt.legend(loc=2)

 plt.show()  

image.gif

# Case 1 - Charged with PV not with grid to contain excess PV even the price is higher than average

# Use the spare capacity to store PV

# Not below the target SOC

start_idx = len(SOC_list) - 192

end_idx = len(SOC_list) - 168

get_resultplot(SOC_list, action_list, x, start_idx, end_idx)

 

image.gif

 

# Zoom of case 3


fig, ax = plt.subplots(1, 1, figsize = (8,6))

#ax2 = ax.twinx()

ln1 = ax.step(range(0, 24), SOC_list[13079:13103], "ro-", label = "SOC")

ln2 = ax.bar(range(0, 24), action_list[13079:13103],

            facecolor = "w", edgecolor = "k", label = "action")

ln3 = ax.axhline(y  = 0.5, linestyle = "--", label = "target SOC")

ax.set_xlabel("Hour")

ax.set_ylabel("SOC")

lns = ln1 + [ln2] + [ln3]

labs = [l.get_label() for l in lns]

ax.legend(lns, labs, loc = 3)

plt.xticks(range(0, 24), range(1, 25))

plt.show()

image.gif

其余详细部分见第4部分。

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

image.gif编辑

 

🌈4 Python代码、数据、详细文章讲解

https://ttaozhi.com/t/p.html?id=2YA7W3RDkr

相关文章
|
2天前
|
数据处理 开发者 Python
Python中的列表推导式:一种优雅的代码简化技巧####
【10月更文挑战第15天】 本文将深入浅出地探讨Python中列表推导式的使用,这是一种强大且简洁的语法结构,用于从现有列表生成新列表。通过具体示例和对比传统循环方法,我们将揭示列表推导式如何提高代码的可读性和执行效率,同时保持语言的简洁性。无论你是Python初学者还是有经验的开发者,掌握这一技能都将使你的编程之旅更加顺畅。 ####
9 1
|
2天前
|
人工智能 IDE 测试技术
使用通义灵码提升Python开发效率:从熟悉代码到实现需求的全流程体验
作为一名Python开发者,我最近开始使用通义灵码作为开发辅助工具。它显著提高了我的工作效率,特别是在理解和修改复杂代码逻辑方面。通过AI编码助手,我能够在短时间内快速上手新项目,实现新需求,并进行代码优化,整体效率提升了60%以上。通义灵码不仅加快了代码生成速度,还增强了代码的健壮性和稳定性。
|
4天前
|
缓存 程序员 开发者
探索Python中的装饰器:一种优雅的代码增强技巧
【10月更文挑战第13天】 在本文中,我们将深入探讨Python中的装饰器,这是一种强大的工具,它允许程序员以简洁而高效的方式扩展或修改函数和类的行为。通过具体示例,我们将展示如何利用装饰器来优化代码结构,提高开发效率,并实现如日志记录、性能计时等常见功能。本文旨在为读者提供一个关于Python装饰器的全面理解,从而能够在他们的项目中灵活运用这一技术。
15 1
|
8天前
|
设计模式 开发者 Python
Python中的装饰器:简化代码与增强功能
【10月更文挑战第9天】在编程的世界里,效率和可读性是衡量代码质量的两大关键指标。Python语言以其简洁明了的语法赢得了无数开发者的青睐,而装饰器则是其独特魅力之一。本文将深入探讨装饰器的工作原理、使用方法以及如何通过自定义装饰器来提升代码的重用性和可维护性,让读者能够更加高效地编写出既优雅又功能强大的代码。
|
8天前
|
IDE 网络安全 开发工具
IDE之pycharm:专业版本连接远程服务器代码,并配置远程python环境解释器(亲测OK)。
本文介绍了如何在PyCharm专业版中连接远程服务器并配置远程Python环境解释器,以便在服务器上运行代码。
58 0
IDE之pycharm:专业版本连接远程服务器代码,并配置远程python环境解释器(亲测OK)。
|
1月前
|
人工智能 数据挖掘 数据处理
揭秘Python编程之美:从基础到进阶的代码实践之旅
【9月更文挑战第14天】本文将带领读者深入探索Python编程语言的魅力所在。通过简明扼要的示例,我们将揭示Python如何简化复杂问题,提升编程效率。无论你是初学者还是有一定经验的开发者,这篇文章都将为你打开一扇通往高效编码世界的大门。让我们开始这段充满智慧和乐趣的Python编程之旅吧!
|
5月前
|
算法 编译器 开发者
如何提高Python代码的性能:优化技巧与实践
本文探讨了如何提高Python代码的性能,重点介绍了一些优化技巧与实践方法。通过使用适当的数据结构、算法和编程范式,以及利用Python内置的性能优化工具,可以有效地提升Python程序的执行效率,从而提升整体应用性能。本文将针对不同场景和需求,分享一些实用的优化技巧,并通过示例代码和性能测试结果加以说明。
|
23天前
|
大数据 Python
Python 高级编程:深入探索高级代码实践
本文深入探讨了Python的四大高级特性:装饰器、生成器、上下文管理器及并发与并行编程。通过装饰器,我们能够在不改动原函数的基础上增添功能;生成器允许按需生成值,优化处理大数据;上下文管理器确保资源被妥善管理和释放;多线程等技术则助力高效完成并发任务。本文通过具体代码实例详细解析这些特性的应用方法,帮助读者提升Python编程水平。
44 5
|
16天前
|
数据采集 机器学习/深度学习 数据处理
Python编程之魔法:从基础到进阶的代码实践
在编程的世界里,Python以其简洁和易读性而闻名。本文将通过一系列精选的代码示例,引导你从Python的基础语法出发,逐步探索更深层次的应用,包括数据处理、网络爬虫、自动化脚本以及机器学习模型的构建。每个例子都将是一次新的发现,带你领略Python编程的魅力。无论你是初学者还是希望提升技能的开发者,这些示例都将是你的宝贵财富。让我们开始这段Python编程之旅,一起揭开它的魔法面纱。
|
2月前
|
机器学习/深度学习 Python
时间序列特征提取:从理论到Python代码实践
时间序列是一种特殊的存在。这意味着你对表格数据或图像进行的许多转换/操作/处理技术对于时间序列来说可能根本不起作用。
52 1
时间序列特征提取:从理论到Python代码实践