逻辑回归-ex2.m
%% Machine Learning Online Class - Exercise 2: Logistic Regression % % Instructions % ------------ % % This file contains code that helps you get started on the logistic % regression exercise. You will need to complete the following functions % in this exericse: % % sigmoid.m % costFunction.m % predict.m % costFunctionReg.m % % For this exercise, you will not need to change any code in this file, % or any other files other than those mentioned above. % %% Initialization clear ; close all; clc %% Load Data % The first two columns contains the exam scores and the third column % contains the label. data = load('ex2data1.txt'); X = data(:, [1, 2]); y = data(:, 3); %% ==================== Part 1: Plotting ==================== % We start the exercise by first plotting the data to understand the % the problem we are working with. fprintf(['Plotting data with + indicating (y = 1) examples and o ' ... 'indicating (y = 0) examples.\n']); plotData(X, y); % Put some labels hold on; % Labels and Legend xlabel('Exam 1 score') ylabel('Exam 2 score') % Specified in plot order legend('Admitted', 'Not admitted') hold off; fprintf('\nProgram paused. Press enter to continue.\n'); pause; %% ============ Part 2: Compute Cost and Gradient ============ % In this part of the exercise, you will implement the cost and gradient % for logistic regression. You neeed to complete the code in % costFunction.m % Setup the data matrix appropriately, and add ones for the intercept term [m, n] = size(X); % Add intercept term to x and X_test X = [ones(m, 1) X]; % Initialize fitting parameters initial_theta = zeros(n + 1, 1); % Compute and display initial cost and gradient [cost, grad] = costFunction(initial_theta, X, y); fprintf('Cost at initial theta (zeros): %f\n', cost); fprintf('Expected cost (approx): 0.693\n'); fprintf('Gradient at initial theta (zeros): \n'); fprintf(' %f \n', grad); fprintf('Expected gradients (approx):\n -0.1000\n -12.0092\n -11.2628\n'); % Compute and display cost and gradient with non-zero theta test_theta = [-24; 0.2; 0.2]; [cost, grad] = costFunction(test_theta, X, y); fprintf('\nCost at test theta: %f\n', cost); fprintf('Expected cost (approx): 0.218\n'); fprintf('Gradient at test theta: \n'); fprintf(' %f \n', grad); fprintf('Expected gradients (approx):\n 0.043\n 2.566\n 2.647\n'); fprintf('\nProgram paused. Press enter to continue.\n'); pause; %% ============= Part 3: Optimizing using fminunc ============= % In this exercise, you will use a built-in function (fminunc) to find the % optimal parameters theta. % Set options for fminunc options = optimset('GradObj', 'on', 'MaxIter', 400); % Run fminunc to obtain the optimal theta % This function will return theta and the cost [theta, cost] = ... fminunc(@(t)(costFunction(t, X, y)), initial_theta, options); % Print theta to screen fprintf('Cost at theta found by fminunc: %f\n', cost); fprintf('Expected cost (approx): 0.203\n'); fprintf('theta: \n'); fprintf(' %f \n', theta); fprintf('Expected theta (approx):\n'); fprintf(' -25.161\n 0.206\n 0.201\n'); % Plot Boundary plotDecisionBoundary(theta, X, y); % Put some labels hold on; % Labels and Legend xlabel('Exam 1 score') ylabel('Exam 2 score') % Specified in plot order legend('Admitted', 'Not admitted') hold off; fprintf('\nProgram paused. Press enter to continue.\n'); pause; %% ============== Part 4: Predict and Accuracies ============== % After learning the parameters, you'll like to use it to predict the outcomes % on unseen data. In this part, you will use the logistic regression model % to predict the probability that a student with score 45 on exam 1 and % score 85 on exam 2 will be admitted. % % Furthermore, you will compute the training and test set accuracies of % our model. % % Your task is to complete the code in predict.m % Predict probability for a student with score 45 on exam 1 % and score 85 on exam 2 prob = sigmoid([1 45 85] * theta); fprintf(['For a student with scores 45 and 85, we predict an admission ' ... 'probability of %f\n'], prob); fprintf('Expected value: 0.775 +/- 0.002\n\n'); % Compute accuracy on our training set p = predict(theta, X); fprintf('Train Accuracy: %f\n', mean(double(p == y)) * 100); fprintf('Expected accuracy (approx): 89.0\n'); fprintf('\n');
逻辑回归-plotData.m
function plotData(X, y) %PLOTDATA Plots the data points X and y into a new figure % PLOTDATA(x,y) plots the data points with + for the positive examples % and o for the negative examples. X is assumed to be a Mx2 matrix. % Create New Figure figure; hold on; % ====================== YOUR CODE HERE ====================== % Instructions: Plot the positive and negative examples on a % 2D plot, using the option 'k+' for the positive % examples and 'ko' for the negative examples. % pos = find(y==1); neg = find(y==0); plot(X(pos, 1), X(pos, 2), 'k+','LineWidth', 2, 'MarkerSize', 7); plot(X(neg, 1), X(neg, 2), 'ko', 'MarkerFaceColor', 'y', 'MarkerSize', 7); % ========================================================================= hold off; end
逻辑回归-costFunction.m
function [J, grad] = costFunction(theta, X, y) %COSTFUNCTION Compute cost and gradient for logistic regression % J = COSTFUNCTION(theta, X, y) computes the cost of using theta as the % parameter for logistic regression and the gradient of the cost % w.r.t. to the parameters. % Initialize some useful values m = length(y); % number of training examples % You need to return the following variables correctly J = 0; grad = zeros(size(theta)); % ====================== YOUR CODE HERE ====================== % Instructions: Compute the cost of a particular choice of theta. % You should set J to the cost. % Compute the partial derivatives and set grad to the partial % derivatives of the cost w.r.t. each parameter in theta % % Note: grad should have the same dimensions as theta % J = (-y'*log(sigmoid(X*theta))-(1-y)'*log(1-sigmoid(X*theta)))/m; grad = X'*(sigmoid(X*theta)-y)./ m; % ============================================================= end
逻辑回归-sigmoid .m
function g = sigmoid(z) %SIGMOID Compute sigmoid function % g = SIGMOID(z) computes the sigmoid of z. % You need to return the following variables correctly g = zeros(size(z)); % ====================== YOUR CODE HERE ====================== % Instructions: Compute the sigmoid of each value of z (z can be a matrix, % vector or scalar). for i = 1:size(z) g(i,1) = 1/(1+exp(-z(i))); end % ============================================================= end
逻辑回归-predict.m
function p = predict(theta, X) %PREDICT Predict whether the label is 0 or 1 using learned logistic %regression parameters theta % p = PREDICT(theta, X) computes the predictions for X using a % threshold at 0.5 (i.e., if sigmoid(theta'*x) >= 0.5, predict 1) m = size(X, 1); % Number of training examples % You need to return the following variables correctly p = zeros(m, 1); % ====================== YOUR CODE HERE ====================== % Instructions: Complete the following code to make predictions using % your learned logistic regression parameters. % You should set p to a vector of 0's and 1's % pos = find(sigmoid(X*theta) >= 0.5); for i = 1:size(pos) p(pos(i,1),1) = 1; end % ========================================================================= end
归一化逻辑回归-ex2_reg.m
%% Machine Learning Online Class - Exercise 2: Logistic Regression % % Instructions % ------------ % % This file contains code that helps you get started on the second part % of the exercise which covers regularization with logistic regression. % % You will need to complete the following functions in this exericse: % % sigmoid.m % costFunction.m % predict.m % costFunctionReg.m % % For this exercise, you will not need to change any code in this file, % or any other files other than those mentioned above. % %% Initialization clear ; close all; clc %% Load Data % The first two columns contains the X values and the third column % contains the label (y). data = load('ex2data2.txt'); X = data(:, [1, 2]); y = data(:, 3); plotData(X, y); % Put some labels hold on; % Labels and Legend xlabel('Microchip Test 1') ylabel('Microchip Test 2') % Specified in plot order legend('y = 1', 'y = 0') hold off; %% =========== Part 1: Regularized Logistic Regression ============ % In this part, you are given a dataset with data points that are not % linearly separable. However, you would still like to use logistic % regression to classify the data points. % % To do so, you introduce more features to use -- in particular, you add % polynomial features to our data matrix (similar to polynomial % regression). % % Add Polynomial Features % Note that mapFeature also adds a column of ones for us, so the intercept % term is handled X = mapFeature(X(:,1), X(:,2)); % Initialize fitting parameters initial_theta = zeros(size(X, 2), 1); % Set regularization parameter lambda to 1 lambda = 1; % Compute and display initial cost and gradient for regularized logistic % regression [cost, grad] = costFunctionReg(initial_theta, X, y, lambda); fprintf('Cost at initial theta (zeros): %f\n', cost); fprintf('Expected cost (approx): 0.693\n'); fprintf('Gradient at initial theta (zeros) - first five values only:\n'); fprintf(' %f \n', grad(1:5)); fprintf('Expected gradients (approx) - first five values only:\n'); fprintf(' 0.0085\n 0.0188\n 0.0001\n 0.0503\n 0.0115\n'); fprintf('\nProgram paused. Press enter to continue.\n'); pause; % Compute and display cost and gradient % with all-ones theta and lambda = 10 test_theta = ones(size(X,2),1); [cost, grad] = costFunctionReg(test_theta, X, y, 10); fprintf('\nCost at test theta (with lambda = 10): %f\n', cost); fprintf('Expected cost (approx): 3.16\n'); fprintf('Gradient at test theta - first five values only:\n'); fprintf(' %f \n', grad(1:5)); fprintf('Expected gradients (approx) - first five values only:\n'); fprintf(' 0.3460\n 0.1614\n 0.1948\n 0.2269\n 0.0922\n'); fprintf('\nProgram paused. Press enter to continue.\n'); pause; %% ============= Part 2: Regularization and Accuracies ============= % Optional Exercise: % In this part, you will get to try different values of lambda and % see how regularization affects the decision coundart % % Try the following values of lambda (0, 1, 10, 100). % % How does the decision boundary change when you vary lambda? How does % the training set accuracy vary? % % Initialize fitting parameters initial_theta = zeros(size(X, 2), 1); % Set regularization parameter lambda to 1 (you should vary this) lambda = 1; % Set Options options = optimset('GradObj', 'on', 'MaxIter', 400); % Optimize [theta, J, exit_flag] = ... fminunc(@(t)(costFunctionReg(t, X, y, lambda)), initial_theta, options); % Plot Boundary plotDecisionBoundary(theta, X, y); hold on; title(sprintf('lambda = %g', lambda)) % Labels and Legend xlabel('Microchip Test 1') ylabel('Microchip Test 2') legend('y = 1', 'y = 0', 'Decision boundary') hold off; % Compute accuracy on our training set p = predict(theta, X); fprintf('Train Accuracy: %f\n', mean(double(p == y)) * 100); fprintf('Expected accuracy (with lambda = 1): 83.1 (approx)\n');
归一化逻辑回归-mapFeature.m
function out = mapFeature(X1, X2) % MAPFEATURE Feature mapping function to polynomial features % % MAPFEATURE(X1, X2) maps the two input features % to quadratic features used in the regularization exercise. % % Returns a new feature array with more features, comprising of % X1, X2, X1.^2, X2.^2, X1*X2, X1*X2.^2, etc.. % % Inputs X1, X2 must be the same size % degree = 6; out = ones(size(X1(:,1))); for i = 1:degree for j = 0:i out(:, end+1) = (X1.^(i-j)).*(X2.^j); end end end
归一化逻辑回归-costFunctionReg.m
function [J, grad] = costFunctionReg(theta, X, y, lambda) %COSTFUNCTIONREG Compute cost and gradient for logistic regression with regularization % J = COSTFUNCTIONREG(theta, X, y, lambda) computes the cost of using % theta as the parameter for regularized logistic regression and the % gradient of the cost w.r.t. to the parameters. % Initialize some useful values m = length(y); % number of training examples % You need to return the following variables correctly J = 0; grad = zeros(size(theta)); % ====================== YOUR CODE HERE ====================== % Instructions: Compute the cost of a particular choice of theta. % You should set J to the cost. % Compute the partial derivatives and set grad to the partial % derivatives of the cost w.r.t. each parameter in theta tTheta = theta(2:size(theta),:); J = (-y'*log(sigmoid(X*theta))-(1-y)'*log(1-sigmoid(X*theta)))/m + lambda*sum(tTheta.^2)/(2*m); grad(1,:) = X(:,1)'*(sigmoid(X*theta)-y)./m; grad(2:size(theta),:) = X(:,2:size(X,2))'*(sigmoid(X*theta)-y)./m+lambda*theta(2:size(theta),:)/m; % [J, grad] = costFunction(theta, X, y); % % J = J + lambda/(2*m)*(sum(theta.^2) - theta(1).^2); %no need theta 1 % grad = grad + lambda/m*theta; % grad(1) = grad(1) - lambda/m*theta(1); % ============================================================= end
归一化逻辑回归-plotDecisionBoundary.m
function plotDecisionBoundary(theta, X, y) %PLOTDECISIONBOUNDARY Plots the data points X and y into a new figure with %the decision boundary defined by theta % PLOTDECISIONBOUNDARY(theta, X,y) plots the data points with + for the % positive examples and o for the negative examples. X is assumed to be % a either % 1) Mx3 matrix, where the first column is an all-ones column for the % intercept. % 2) MxN, N>3 matrix, where the first column is all-ones % Plot Data plotData(X(:,2:3), y); hold on if size(X, 2) <= 3 % Only need 2 points to define a line, so choose two endpoints plot_x = [min(X(:,2))-2, max(X(:,2))+2]; % Calculate the decision boundary line plot_y = (-1./theta(3)).*(theta(2).*plot_x + theta(1)); % Plot, and adjust axes for better viewing plot(plot_x, plot_y) % Legend, specific for the exercise legend('Admitted', 'Not admitted', 'Decision Boundary') axis([30, 100, 30, 100]) else % Here is the grid range u = linspace(-1, 1.5, 50); v = linspace(-1, 1.5, 50); z = zeros(length(u), length(v)); % Evaluate z = theta*x over the grid for i = 1:length(u) for j = 1:length(v) z(i,j) = mapFeature(u(i), v(j))*theta; end end z = z'; % important to transpose z before calling contour % Plot z = 0 % Notice you need to specify the range [0, 0] contour(u, v, z, [0, 0], 'LineWidth', 2) end hold off end