一寸宕机一寸血,十万容器十万兵|Win10/Mac系统下基于Kubernetes(k8s)搭建Gunicorn+Flask高可用Web集群

本文涉及的产品
容器镜像服务 ACR,镜像仓库100个 不限时长
简介: 2023年,君不言容器技术则已,欲言容器则必称Docker,毫无疑问,它是当今最流行的容器技术之一,但是当我们面对海量的镜像与容器时,怎样快速精准的对海量容器进行管理和编排就又成了新的课题,此时,由Google开源的Kubernetes(读音\[kubə'netis\],业界也有称其k8s的,但k8s其实就是文盲版的Kubernetes,只是因为k和s之间有8个字母)就应时而生了,它是一个开源的用于多个主机虚拟成一个云平台后进行容器资源管理和应用编排引擎,致力于让部署容器化应用简单并且高效,提供了应用的全生命周期管理,如应用部署,规划,更新,维护等机制。本次我们尝试在Win10/Mac系统下,

2023年,君不言容器技术则已,欲言容器则必称Docker,毫无疑问,它是当今最流行的容器技术之一,但是当我们面对海量的镜像与容器时,怎样快速精准的对海量容器进行管理和编排就又成了新的课题,此时,由Google开源的Kubernetes(读音[kubə'netis],业界也有称其k8s的,但k8s其实就是文盲版的Kubernetes,只是因为k和s之间有8个字母)就应时而生了,它是一个开源的用于多个主机虚拟成一个云平台后进行容器资源管理和应用编排引擎,致力于让部署容器化应用简单并且高效,提供了应用的全生命周期管理,如应用部署,规划,更新,维护等机制。本次我们尝试在Win10/Mac系统下,利用Kubernetes部署Gunicorn+Flask高可用Web集群项目。

首先,Kubernetes基于Docker-desktop,所以下载Docker-desktop安装包:https://www.docker.com/products/docker-desktop

这里我们使用的就是Docker官方最新版3.1.0,内部集成的Kubernetes版本是1.19.3,在安装之前有两点要说明下,如果是Windows用户,需要确保系统版本为专业版:

第二,在专业版的基础上,开启系统的Hyper-v虚拟化功能:

所以Windows用户想要对Kubernetes一亲芳泽的话,同时确保上面两点即可,而Mac用户则无特殊要求。

双击安装包进行安装,默认安装在C盘目录,成功后,启动Docker-desktop,一般情况下,Docker很容易启动成功,但是Kubernetes往往会卡在启动界面,这是因为一些学术问题导致无法下载Kubernetes的依赖镜像,此时我们需要另辟蹊径,采用一些开源的三方库迂回帮我们下载这些镜像,这里推荐这个开源项目:https://github.com/AliyunContainerService/k8s-for-docker-desktop

输入命令拉取项目:

git clone https://github.com/AliyunContainerService/k8s-for-docker-desktop.git

进入项目的目录内,然后检查自己的Kubernetes版本号,该项目默认拉取的就是1.19.3的依赖镜像,如果您安装的Kubernetes是老版本,需要自行切换版本进行拉取操作:

如Kubernetes版本为 v1.18.8, 请使用下面命令切换 v1.18.8 分支 git checkout v1.18.8
如Kubernetes版本为 v1.18.6, 请使用下面命令切换 v1.18.6 分支 git checkout v1.18.6
如Kubernetes版本为 v1.18.3, 请使用下面命令切换 v1.18.3 分支 git checkout v1.18.3
如Kubernetes版本为 v1.16.5, 请使用下面命令切换 v1.16.5 分支 git checkout v1.16.5
如Kubernetes版本为 v1.15.5, 请使用下面命令切换 v1.15.5 分支 git checkout v1.15.5
如Kubernetes版本为 v1.15.4, 请使用下面命令切换 v1.15.4 分支 git checkout v1.15.4
如Kubernetes版本为 v1.14.8, 请使用下面命令切换 v1.14.8 分支 git checkout v1.14.8
如Kubernetes版本为 v1.14.7, 请使用下面命令切换 v1.14.7 分支 git checkout v1.14.7
如Kubernetes版本为 v1.14.6, 请使用下面命令切换 v1.14.6 分支 git checkout v1.14.6
如Kubernetes版本为 v1.14.3, 请使用下面命令切换 v1.14.3 分支 git checkout v1.14.3
如Kubernetes版本为 v1.14.1, 请使用下面命令切换 v1.14.1 分支 git checkout v1.14.1
如Kubernetes版本为 v1.13.0, 请使用下面命令切换 v1.13.0 分支 git checkout v1.13.0
如Kubernetes版本为 v1.10.11, 请使用下面命令切换 v1.10.11 分支 git checkout v1.10.11

随后,如果是Mac用户直接执行shell脚本:

./load_images.sh

如果是Windows用户,需要执行set-ExecutionPolicy RemoteSigned命令后再执行脚本:

set-ExecutionPolicy RemoteSigned  
.\load_images.ps1

执行后发现代理拉取Kubernetes依赖镜像:

PS C:\Users\Administrator\www\k8s-for-docker-desktop> set-ExecutionPolicy RemoteSigned  
  
执行策略更改  
执行策略可帮助你防止执行不信任的脚本。更改执行策略可能会产生安全风险,如 https:/go.microsoft.com/fwlink/?LinkID=135170  
中的 about_Execution_Policies 帮助主题所述。是否要更改执行策略?  
[Y] 是(Y)  [A] 全是(A)  [N] 否(N)  [L] 全否(L)  [S] 暂停(S)  [?] 帮助 (默认值为“N”): y  
PS C:\Users\Administrator\www\k8s-for-docker-desktop> .\load_images.ps1  
k8s.gcr.io/pause:3.2=registry.cn-hangzhou.aliyuncs.com/google_containers/pause:3.2  
3.2: Pulling from google_containers/pause  
Digest: sha256:927d98197ec1141a368550822d18fa1c60bdae27b78b0c004f705f548c07814f  
Status: Downloaded newer image for registry.cn-hangzhou.aliyuncs.com/google_containers/pause:3.2  
registry.cn-hangzhou.aliyuncs.com/google_containers/pause:3.2  
Untagged: registry.cn-hangzhou.aliyuncs.com/google_containers/pause:3.2  
Untagged: registry.cn-hangzhou.aliyuncs.com/google_containers/pause@sha256:927d98197ec1141a368550822d18fa1c60bdae27b78b0c004f705f548c07814f  
k8s.gcr.io/kube-controller-manager:v1.19.3=registry.cn-hangzhou.aliyuncs.com/google_containers/kube-controller-manager:v1.19.3  
v1.19.3: Pulling from google_containers/kube-controller-manager  
Digest: sha256:1ad35b623b9123c6aab99306ba5427e2829b36b378b9b80a6e988713ac5bffd4  
Status: Downloaded newer image for registry.cn-hangzhou.aliyuncs.com/google_containers/kube-controller-manager:v1.19.3  
registry.cn-hangzhou.aliyuncs.com/google_containers/kube-controller-manager:v1.19.3  
Untagged: registry.cn-hangzhou.aliyuncs.com/google_containers/kube-controller-manager:v1.19.3  
Untagged: registry.cn-hangzhou.aliyuncs.com/google_containers/kube-controller-manager@sha256:1ad35b623b9123c6aab99306ba5427e2829b36b378b9b80a6e988713ac5bffd4

拉取结束后,执行命令查看镜像列表:

docker images

可以看到,针对Kubernetes1.19.3的基础镜像列表:

PS C:\Users\Administrator\www\k8s-for-docker-desktop> docker images  
REPOSITORY                                                       TAG                                                     IMAGE ID       CREATED         SIZE  
redis                                                            latest                                                  621ceef7494a   3 weeks ago     104MB  
docker/desktop-kubernetes                                        kubernetes-v1.19.3-cni-v0.8.5-critools-v1.17.0-debian   bb2106081d17   2 months ago    285MB  
k8s.gcr.io/kube-proxy                                            v1.19.3                                                 cdef7632a242   3 months ago    118MB  
k8s.gcr.io/kube-apiserver                                        v1.19.3                                                 a301be0cd44b   3 months ago    119MB  
k8s.gcr.io/kube-controller-manager                               v1.19.3                                                 9b60aca1d818   3 months ago    111MB  
k8s.gcr.io/kube-scheduler                                        v1.19.3                                                 aaefbfa906bd   3 months ago    45.7MB  
k8s.gcr.io/etcd                                                  3.4.13-0                                                0369cf4303ff   5 months ago    253MB  
k8s.gcr.io/coredns                                               1.7.0                                                   bfe3a36ebd25   7 months ago    45.2MB  
docker/desktop-storage-provisioner                               v1.1                                                    e704287ce753   10 months ago   41.8MB  
docker/desktop-vpnkit-controller                                 v1.0                                                    79da37e5a3aa   11 months ago   36.6MB  
k8s.gcr.io/pause                                                 3.2                                                     80d28bedfe5d   11 months ago   683kB  
quay.io/kubernetes-ingress-controller/nginx-ingress-controller   0.26.1                                                  29024c9c6e70   16 months ago   483MB

此时,不要着急,如果是Mac用户,需要单独删除一下缓存:

# rm -rf ~/Library/Group\ Containers/group.com.docker/pki/  
# rm -rf ~/.kube

Windows用户不需额外操作,直接重启Docker-desktop,并且点击开启Kubernetes服务:

随后,在命令行中键入命令:

kubectl version

如果能返回版本号说明安装和配置成功:

PS C:\Users\Administrator> kubectl version  
Client Version: version.Info{Major:"1", Minor:"19", GitVersion:"v1.19.3", GitCommit:"1e11e4a2108024935ecfcb2912226cedeafd99df", GitTreeState:"clean", BuildDate:"2020-10-14T12:50:19Z", GoVersion:"go1.15.2", Compiler:"gc", Platform:"windows/amd64"}  
Server Version: version.Info{Major:"1", Minor:"19", GitVersion:"v1.19.3", GitCommit:"1e11e4a2108024935ecfcb2912226cedeafd99df", GitTreeState:"clean", BuildDate:"2020-10-14T12:41:49Z", GoVersion:"go1.15.2", Compiler:"gc", Platform:"linux/amd64"}  
PS C:\Users\Administrator>

接下来,我们简单的部署一下Kubernetes容器,看看和Docker部署有何不同,先来看看Docker传统的部署方式,假设部署一台redis应用,首先拉取镜像:

docker pull redis

启动容器:

docker run -p 6380:6379 --name redis redis

使用redis客户端进行链接:

redis-cli -p 6380

返回数据库链接状态:

PS C:\Users\Administrator> redis-cli -p 6380  
127.0.0.1:6380> ping  
PONG

没有任何问题,因为Docker直接操作的对象就是镜像和容器,而Kubernetes是基于Deployment来对集群的Pod和rs服务进行管理,每一个Deployment 都对应集群中的一次部署,所以Deployment是基本的 Kubernetes对象。

首先建立Deployment对象:

kubectl create deployment --image=redis redis

这里镜像还是使用刚才拉取的redis镜像,deployment别名设置为redis:

PS C:\Users\Administrator\www\k8s-for-docker-desktop> kubectl create deployment --image=redis redis  
deployment.apps/redis created

创建成功后,启动rs服务:

kubectl expose deployment redis --port=6379 --name=redis-server

这里的端口号是pod中隔离容器的端口,而非主节点端口:

PS C:\Users\Administrator\www\k8s-for-docker-desktop> kubectl expose deployment redis --port=6379 --name=redis-server  
service/redis-server exposed

随后获取启动的pod列表:

kubectl get pods

我们知道pod是集群执行的最小单位,这里使用get pods来查看运行的pod:

PS C:\Users\Administrator\www\k8s-for-docker-desktop> kubectl get pods  
NAME                     READY   STATUS    RESTARTS   AGE  
redis-6749d7bd65-l8gnw   1/1     Running   0          64s

可以看到已经运行成功,最后需要将pod端口和主节点端口进行端口映射操作:

kubectl port-forward redis-6749d7bd65-l8gnw 6380:6379

这里的参数就是pod的name:

PS C:\Users\Administrator\www\k8s-for-docker-desktop> kubectl port-forward redis-6749d7bd65-l8gnw 6380:6379             Forwarding from 127.0.0.1:6380 -> 6379  
Forwarding from [::1]:6380 -> 6379  
Handling connection for 6380  
Handling connection for 6380

随后使用redis客户端进行链接:

PS C:\Users\Administrator> redis-cli -p 6380  
127.0.0.1:6380> ping  
PONG

这里就部署成功了,虽然流程上要比Docker直接部署要略微繁复一些,但是Kubernetes自带良好的伸缩和扩展以及高可用特性,一旦pod僵死或者宕机,可以自动生成新的pod的来实现高可用。

接下来尝试一些进阶操作,部署Gunicorn+Flask的Web应用,还记得之前的这篇文章:利用DockerHub在Centos7.7环境下部署Nginx反向代理Gunicorn+Flask独立架构吗?里面详细阐述了如何使用Dockerfile打包镜像,这里我们拉取已经打包好的flask+gunicorn镜像:

docker pull zcxey2911/myflask

接着建立基于deployment的部署配置文件:deployment.yaml

apiVersion: v1  
kind: Service  
metadata:  
  name: myflask  
spec:  
  selector:  
    app: myflask  
  ports:  
  - protocol: "TCP"  
    port: 5000  
    targetPort: 5000  
  type: LoadBalancer  
  
---  
apiVersion: apps/v1  
kind: Deployment  
metadata:  
  name: myflask  
spec:  
  selector:  
    matchLabels:  
      app: myflask  
  replicas: 4  
  template:  
    metadata:  
      labels:  
        app: myflask  
    spec:  
      containers:  
      - name: myflask  
        image: zcxey2911/myflask  
        imagePullPolicy: Never  
        ports:  
        - containerPort: 5000

这个配置文件的含义是:将本地的myfalsk镜像作为Deployment基础镜像部署,集群运行四个pod来维持生产环境的服务保证,运行协议当然是TCP,主节点端口号和pod端口保持一致都是5000

然后执行命令启动服务:

kubectl apply -f deployment.yaml

查看服务状态:

liuyue:myflask liuyue$ kubectl get pods  
NAME                      READY   STATUS    RESTARTS   AGE  
myflask-74f646444-h7rtf   1/1     Running   0          42h  
myflask-74f646444-lfrdw   1/1     Running   0          42h  
myflask-74f646444-p96jl   1/1     Running   0          43h  
myflask-74f646444-zc7fp   1/1     Running   0          43h

可以看到四台pod同时运行,访问网址:http://localhost:5000

没有问题,即使我们手动kill一台pod:

liuyue:myflask liuyue$ kubectl delete pod myflask-74f646444-h7rtf  
pod "myflask-74f646444-h7rtf" deleted  
  
liuyue:myflask liuyue$   
liuyue:myflask liuyue$ kubectl get pods  
NAME                      READY   STATUS    RESTARTS   AGE  
myflask-74f646444-dg8v7   1/1     Running   0          10s  
myflask-74f646444-lfrdw   1/1     Running   0          42h  
myflask-74f646444-p96jl   1/1     Running   0          43h  
myflask-74f646444-zc7fp   1/1     Running   0          43h

可以看到集群立刻又会重新生成一个pod来维持服务稳定,这就是Docker原生容器所不具备的高可用特性。

结语:未来已来,将至已至,在21世纪的第二个十年里,阿里、字节跳动、腾讯、百度等中国互联网行业巨擘们,都在加紧深耕容器领域,而Kubernetes也是这些大厂未来的战略核心。有了Kubernetes,我们就可以将整个大规模的服务器对计算资源抽象化通过一个个容器进行自动化且细致化管理,将最终的应用服务交还给用户,而用户则并不需要关心容器本身。最后,奉上项目地址与君共飨:https://gitee.com/QiHanXiBei/myflask

相关实践学习
深入解析Docker容器化技术
Docker是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的容器中,然后发布到任何流行的Linux机器上,也可以实现虚拟化,容器是完全使用沙箱机制,相互之间不会有任何接口。Docker是世界领先的软件容器平台。开发人员利用Docker可以消除协作编码时“在我的机器上可正常工作”的问题。运维人员利用Docker可以在隔离容器中并行运行和管理应用,获得更好的计算密度。企业利用Docker可以构建敏捷的软件交付管道,以更快的速度、更高的安全性和可靠的信誉为Linux和Windows Server应用发布新功能。 在本套课程中,我们将全面的讲解Docker技术栈,从环境安装到容器、镜像操作以及生产环境如何部署开发的微服务应用。本课程由黑马程序员提供。     相关的阿里云产品:容器服务 ACK 容器服务 Kubernetes 版(简称 ACK)提供高性能可伸缩的容器应用管理能力,支持企业级容器化应用的全生命周期管理。整合阿里云虚拟化、存储、网络和安全能力,打造云端最佳容器化应用运行环境。 了解产品详情: https://www.aliyun.com/product/kubernetes
相关文章
|
13天前
|
人工智能 算法 调度
阿里云ACK托管集群Pro版共享GPU调度操作指南
本文介绍在阿里云ACK托管集群Pro版中,如何通过共享GPU调度实现显存与算力的精细化分配,涵盖前提条件、使用限制、节点池配置及任务部署全流程,提升GPU资源利用率,适用于AI训练与推理场景。
90 1
|
20天前
|
弹性计算 监控 调度
ACK One 注册集群云端节点池升级:IDC 集群一键接入云端 GPU 算力,接入效率提升 80%
ACK One注册集群节点池实现“一键接入”,免去手动编写脚本与GPU驱动安装,支持自动扩缩容与多场景调度,大幅提升K8s集群管理效率。
177 89
|
6月前
|
资源调度 Kubernetes 调度
从单集群到多集群的快速无损转型:ACK One 多集群应用分发
ACK One 的多集群应用分发,可以最小成本地结合您已有的单集群 CD 系统,无需对原先应用资源 YAML 进行修改,即可快速构建成多集群的 CD 系统,并同时获得强大的多集群资源调度和分发的能力。
233 9
|
6月前
|
资源调度 Kubernetes 调度
从单集群到多集群的快速无损转型:ACK One 多集群应用分发
本文介绍如何利用阿里云的分布式云容器平台ACK One的多集群应用分发功能,结合云效CD能力,快速将单集群CD系统升级为多集群CD系统。通过增加分发策略(PropagationPolicy)和差异化策略(OverridePolicy),并修改单集群kubeconfig为舰队kubeconfig,可实现无损改造。该方案具备多地域多集群智能资源调度、重调度及故障迁移等能力,帮助用户提升业务效率与可靠性。
|
3月前
|
运维 数据可视化 C++
2025 热门的 Web 化容器部署工具对比:Portainer VS Websoft9
2025年热门Web化容器部署工具对比:Portainer与Websoft9。Portainer以轻量可视化管理见长,适合技术团队运维;Websoft9则提供一站式应用部署与容器管理,内置丰富开源模板,降低中小企业部署门槛。两者各有优势,助力企业提升容器化效率。
304 1
2025 热门的 Web 化容器部署工具对比:Portainer VS Websoft9
|
7月前
|
Kubernetes 调度 异构计算
生产环境 K8S + Deepseek 实现大模型部署 和 容器调度(图解+史上最全)
生产环境 K8S + Deepseek 实现大模型部署 和 容器调度(图解+史上最全)
生产环境 K8S + Deepseek 实现大模型部署 和 容器调度(图解+史上最全)
|
8月前
|
存储 Kubernetes 监控
K8s集群实战:使用kubeadm和kuboard部署Kubernetes集群
总之,使用kubeadm和kuboard部署K8s集群就像回归童年一样,简单又有趣。不要忘记,技术是为人服务的,用K8s集群操控云端资源,我们不过是想在复杂的世界找寻简单。尽管部署过程可能遇到困难,但朝着简化复杂的目标,我们就能找到意义和乐趣。希望你也能利用这些工具,找到你的乐趣,满足你的需求。
720 33
|
7月前
|
数据采集 消息中间件 Kubernetes
容器化爬虫部署:基于K8s的任务调度与自动扩缩容设计
随着业务复杂度提升,传统定时任务和手工扩缩容难以满足高并发与实时性需求。本文对比两种基于 Kubernetes 的爬虫调度与扩缩容方案:CronJob+HPA 和 KEDA。从调度灵活性、扩缩容粒度、实现难度等维度分析,并提供 YAML+Python 示例。方案 A(CronJob+HPA)适合固定定时任务,配置简单;方案 B(KEDA)支持事件驱动,适合高并发与异步触发场景。根据实际需求可混合使用,优化资源利用与效率。
213 4
|
8月前
|
Kubernetes 开发者 Docker
集群部署:使用Rancher部署Kubernetes集群。
以上就是使用 Rancher 部署 Kubernetes 集群的流程。使用 Rancher 和 Kubernetes,开发者可以受益于灵活性和可扩展性,允许他们在多种环境中运行多种应用,同时利用自动化工具使工作负载更加高效。
411 19
|
8月前
|
存储 运维 Kubernetes
容器数据保护:基于容器服务 Kubernetes 版(ACK)备份中心实现K8s存储卷一键备份与恢复
阿里云ACK备份中心提供一站式容器化业务灾备及迁移方案,减少数据丢失风险,确保业务稳定运行。

相关产品

  • 容器服务Kubernetes版
  • 推荐镜像

    更多