深度之眼(二十)——Python:Pandas库(下)

简介: 深度之眼(二十)——Python:Pandas库(下)

三、数值运算及统计分析


0a2653c851af460fa595bd959398a8f1.png

2、Numpy通 用函数同样适用于Pandas

0eacb84100b54626af849e6b562bf92a.png

一般来说,纯粹的计算在Numpy里执行的更快

Numpy更侧重于计算,Pandas更侧重于数据处理

(广播)


0a2653c851af460fa595bd959398a8f1.png0eacb84100b54626af849e6b562bf92a.png2d65d23f6d4748949b924e4057485923.png


(2)统计相关


0a2653c851af460fa595bd959398a8f1.png0eacb84100b54626af849e6b562bf92a.png2d65d23f6d4748949b924e4057485923.png2e9b90b2ca334476abebe75bafe6eeaa.png4cebaac233b3433da32a72337a77fc60.png6de278e6d6694ce5bb08e7e842b7e74b.png7a399525ddec4b77923c464820b33738 (1).png7a399525ddec4b77923c464820b33738.png


四、缺失值处理



0a2653c851af460fa595bd959398a8f1.png0eacb84100b54626af849e6b562bf92a.png2d65d23f6d4748949b924e4057485923.png


3、填充缺失值


0a2653c851af460fa595bd959398a8f1.png


五、合并数据


0eacb84100b54626af849e6b562bf92a.png

垂直合并


2d65d23f6d4748949b924e4057485923.png2e9b90b2ca334476abebe75bafe6eeaa.png4cebaac233b3433da32a72337a77fc60.png6de278e6d6694ce5bb08e7e842b7e74b.png


六、分组和数据透视表


0a2653c851af460fa595bd959398a8f1.png0eacb84100b54626af849e6b562bf92a.png2d65d23f6d4748949b924e4057485923.png2e9b90b2ca334476abebe75bafe6eeaa.png4cebaac233b3433da32a72337a77fc60.png


相关文章
|
10天前
|
调度 开发者 Python
Python中的异步编程:理解asyncio库
在Python的世界里,异步编程是一种高效处理I/O密集型任务的方法。本文将深入探讨Python的asyncio库,它是实现异步编程的核心。我们将从asyncio的基本概念出发,逐步解析事件循环、协程、任务和期货的概念,并通过实例展示如何使用asyncio来编写异步代码。不同于传统的同步编程,异步编程能够让程序在等待I/O操作完成时释放资源去处理其他任务,从而提高程序的整体效率和响应速度。
|
6天前
|
数据库 Python
异步编程不再难!Python asyncio库实战,让你的代码流畅如丝!
在编程中,随着应用复杂度的提升,对并发和异步处理的需求日益增长。Python的asyncio库通过async和await关键字,简化了异步编程,使其变得流畅高效。本文将通过实战示例,介绍异步编程的基本概念、如何使用asyncio编写异步代码以及处理多个异步任务的方法,帮助你掌握异步编程技巧,提高代码性能。
20 4
|
6天前
|
API 数据处理 Python
探秘Python并发新世界:asyncio库,让你的代码并发更优雅!
在Python编程中,随着网络应用和数据处理需求的增长,并发编程变得愈发重要。asyncio库作为Python 3.4及以上版本的标准库,以其简洁的API和强大的异步编程能力,成为提升性能和优化资源利用的关键工具。本文介绍了asyncio的基本概念、异步函数的定义与使用、并发控制和资源管理等核心功能,通过具体示例展示了如何高效地编写并发代码。
15 2
|
7天前
|
机器学习/深度学习 数据采集 数据挖掘
解锁 Python 数据分析新境界:Pandas 与 NumPy 高级技巧深度剖析
Pandas 和 NumPy 是 Python 中不可或缺的数据处理和分析工具。本文通过实际案例深入剖析了 Pandas 的数据清洗、NumPy 的数组运算、结合两者进行数据分析和特征工程,以及 Pandas 的时间序列处理功能。这些高级技巧能够帮助我们更高效、准确地处理和分析数据,为决策提供支持。
19 2
|
12天前
|
数据采集 JSON 测试技术
Python爬虫神器requests库的使用
在现代编程中,网络请求是必不可少的部分。本文详细介绍 Python 的 requests 库,一个功能强大且易用的 HTTP 请求库。内容涵盖安装、基本功能(如发送 GET 和 POST 请求、设置请求头、处理响应)、高级功能(如会话管理和文件上传)以及实际应用场景。通过本文,你将全面掌握 requests 库的使用方法。🚀🌟
33 7
|
12天前
|
机器学习/深度学习 数据采集 算法
Python机器学习:Scikit-learn库的高效使用技巧
【10月更文挑战第28天】Scikit-learn 是 Python 中最受欢迎的机器学习库之一,以其简洁的 API、丰富的算法和良好的文档支持而受到开发者喜爱。本文介绍了 Scikit-learn 的高效使用技巧,包括数据预处理(如使用 Pipeline 和 ColumnTransformer)、模型选择与评估(如交叉验证和 GridSearchCV)以及模型持久化(如使用 joblib)。通过这些技巧,你可以在机器学习项目中事半功倍。
20 3
|
5天前
|
并行计算 数据挖掘 大数据
Python数据分析实战:利用Pandas处理大数据集
Python数据分析实战:利用Pandas处理大数据集
|
5天前
|
数据采集 数据可视化 数据挖掘
利用Python进行数据分析:Pandas库实战指南
利用Python进行数据分析:Pandas库实战指南
|
12天前
|
文字识别 自然语言处理 API
Python中的文字识别利器:pytesseract库
`pytesseract` 是一个基于 Google Tesseract-OCR 引擎的 Python 库,能够从图像中提取文字,支持多种语言,易于使用且兼容性强。本文介绍了 `pytesseract` 的安装、基本功能、高级特性和实际应用场景,帮助读者快速掌握 OCR 技术。
29 0
|
1月前
|
Python
pip批量安装Python库 requirement.txt 离线环境无互联网环境下pip安装Python库
pip批量安装Python库 requirement.txt 离线环境无互联网环境下pip安装Python库
102 3