机器学习中的数学原理——感知机模型

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,100CU*H 3个月
交互式建模 PAI-DSW,每月250计算时 3个月
简介: 机器学习中的数学原理——感知机模型

一、什么是感知机

感知机是二分类的线性分类模型输入为实例的特征向量,输出为实例的类别(取+1和-1)。感知机目的在求一个可以将实例分开的超平面,为了求它,我们用到基于误分类的损失函数和梯度下降的优化策略。

二、模型分析

之前的学习中,我们学习了权重向量的概念,明白了只要找到权重向量,就能够找到那条分割线,所有现在的问题来到了,我们应该怎么样找到权重向量呢?基本做法和回归时相同:将权重向量用作参数,创建更新表达式来更新参数。接下来,我要说明的就是被称为感知机(perceptron) 的模型。 感知机是非常简单的模型,基本不会应用在实际的问题中。 但它是神经网络和深度学习的基础模型,所以记住它没坏处。

感知机是接受多个输入后将每个值与各自的权重相乘,最后输出总和的模型。人们常用这样的图来表示它:

和我们之前说到的向量的内积很相似,这次我们从图像的角度去理解。在介绍参数更新表达式之前,我们最好做一些准备工作,我们可以先理解这一部分,磨刀不误砍柴工。

2.1训练数据的准备

我们依然以图像的横纵分类为探索问题,设表示宽的轴为 x1、表示高的轴为 x2,用 y 来 表示图像是横向还是纵向的,横向的值为 1、纵向的值为 −1。我们将其画在表里:

接下来,根据参数向量 x 来判断图像是横向还是纵向的函 数,即返回 1 或者 −1 的函数 fw(x)的定义如下。这个函数被称为判别函数。

也就是说,这是根据内积的符号来给出不同返回值的函数,这样就可以判断图像是横向还是纵向的。如果不理解也没有关系,我们对上面这句话再深入理解一下:

与权重向量 w 的内积为负的向量 x 是 什么样的向量呢?用图形来解释更容易理解,所以我们利用这个 包含 cos 的表达式来思考。

之前我们说过|w| 和 |x| 必定为正数,所以决定内积符号的是 cos θ ,我们回忆一下cos θ 的图,它什么时候为 负呢?

在 90◦ < θ < 270◦ 的时候 cos θ 为负,与权重向量 w 之间的夹角为 θ,在 90◦ < θ < 270◦ 范围内的所有 向量都符合条件,所以就在这条直线下面、与权重向量方向相反的这个区域

同理,我们也可以得到使内积为正的向量

所以可以根据内积的正负来分割内积是衡量向量之间相似程度的指标。结果为正,说明二者相似; 为 0 则二者垂直;为负则说明二者不相似。

2.2权重向量的更新表达式

在这个基础上,我们可以这样定义权重向量的更新表达式。

i 在介绍回归的时候也出现过,它指的是训练数据的索引,而不是i 次方的意思,这一点一定要注意。用这个表达式重复处理所有训练数据,更新权重向量。

虽然表达式整体看上去 乱七八糟的,但是一部分一部分分解来看就不那么难了。好好地 想清楚各部分的含义,再慢慢理解整体含义就好了。之前我们也是这么做的

我们先从表达式括号中的 fw(x(i) ) ̸= y(i)开始看,意思是通过判别函数对宽和高的向量 x 进行分类的结果与实际的标签 y不同,也就是说,判别函数的分类结果不正确。那么另外一个 fw(x(i) ) = y(i)就是分类正确。这也就是说,刚才的更新表达式只有在判别函数分类失败的时候 才会更新参数值。

现在着重看一下w := w + y(i) x(i)这个表达式的含义,我们可以结合图形来理解,一边把学习过程实际地画在 图上,一边去考虑它的含义可能就容易理解了。首先在图上随意 画一个权重向量和直线

权重向量是通过随机值来初始化的,上面向量就可以是初始向量。 在这个状态下,假设第一个训练数据是 x(1) = (125, 30),首先我们就用它来更新参数。

现在权重向量 w 和训练数据的向量 x(1) 二者的方向几乎相 反,w 和 x(1) 之间的夹角 θ 的范围是 90◦ < θ < 270◦ ,内积为负。 也就是说,判别函数 fw(x(1) ) 的分类结果为 −1。我们在这里应用刚才的更新表达式。现在 y(1) = 1,所以更新表 达式是这样的,其实就是向量的加法

这个 w + x(1) 就是下一个新的 w,画一条与新的权重向量 垂直的直线,相当于把原来的线旋转了一下,刚才x(1) 与权重向量分居直线两侧,现在它们在同一侧了

这次 θ < 90◦,所以内积为正,判别函数 fw(x) 的分类结果为1。而且x(1) 的标签也为 1,说明分类成功了。这样就可以更新参数的权重向量,刚才处理的是标签值 y = 1 的情况,而对于 y = −1 的情况,只是 更新表达式的向量加法变成了减法而已,做的事情是一样的。

也就是说,虽然有加法和减法的区别,但它们的做法都是在分类失败时更新权重向量,使得直线旋转相应的角度,这就是感知机的学习方法。


相关文章
|
1月前
|
人工智能 自然语言处理 IDE
模型微调不再被代码难住!PAI和Qwen3-Coder加速AI开发新体验
通义千问 AI 编程大模型 Qwen3-Coder 正式开源,阿里云人工智能平台 PAI 支持云上一键部署 Qwen3-Coder 模型,并可在交互式建模环境中使用 Qwen3-Coder 模型。
448 109
|
2月前
|
人工智能 自然语言处理 运维
【新模型速递】PAI-Model Gallery云上一键部署Kimi K2模型
月之暗面发布开源模型Kimi K2,采用MoE架构,参数达1T,激活参数32B,具备强代码能力及Agent任务处理优势。在编程、工具调用、数学推理测试中表现优异。阿里云PAI-Model Gallery已支持云端部署,提供企业级方案。
219 0
【新模型速递】PAI-Model Gallery云上一键部署Kimi K2模型
|
6月前
|
机器学习/深度学习 人工智能 JSON
【解决方案】DistilQwen2.5-R1蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践
阿里云的人工智能平台 PAI,作为一站式的机器学习和深度学习平台,对DistilQwen2.5-R1模型系列提供了全面的技术支持。无论是开发者还是企业客户,都可以通过 PAI-ModelGallery 轻松实现 Qwen2.5 系列模型的训练、评测、压缩和快速部署。本文详细介绍在 PAI 平台使用 DistilQwen2.5-R1 蒸馏模型的全链路最佳实践。
|
5月前
|
人工智能 JSON 算法
【解决方案】DistilQwen2.5-DS3-0324蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践
DistilQwen 系列是阿里云人工智能平台 PAI 推出的蒸馏语言模型系列,包括 DistilQwen2、DistilQwen2.5、DistilQwen2.5-R1 等。本文详细介绍DistilQwen2.5-DS3-0324蒸馏小模型在PAI-ModelGallery的训练、评测、压缩及部署实践。
|
6月前
|
人工智能 运维 API
PAI-Model Gallery云上一键部署阶跃星辰新模型Step1X-Edit
4月27日,阶跃星辰正式发布并开源图像编辑大模型 Step1X-Edit,性能达到开源 SOTA。Step1X-Edit模型总参数量为19B,实现 MLLM 与 DiT 的深度融合,在编辑精度与图像保真度上实现大幅提升,具备语义精准解析、身份一致性保持、高精度区域级控制三项关键能力;支持文字替换、风格迁移等11 类高频图像编辑任务类型。在最新发布的图像编辑基准 GEdit-Bench 中,Step1X-Edit 在语义一致性、图像质量与综合得分三项指标上全面领先现有开源模型,比肩 GPT-4o 与 Gemin。PAI-ModelGallery 支持Step1X-Edit一键部署方案。
|
6月前
|
人工智能 算法 网络安全
基于PAI+专属网关+私网连接:构建全链路Deepseek云上私有化部署与模型调用架构
本文介绍了阿里云通过PAI+专属网关+私网连接方案,帮助企业实现DeepSeek-R1模型的私有化部署。方案解决了算力成本高、资源紧张、部署复杂和数据安全等问题,支持全链路零公网暴露及全球低延迟算力网络,最终实现技术可控、成本优化与安全可靠的AI部署路径,满足企业全球化业务需求。
|
2月前
|
人工智能 自然语言处理 运维
【新模型速递】PAI-Model Gallery云上一键部署gpt-oss系列模型
阿里云 PAI-Model Gallery 已同步接入 gpt-oss 系列模型,提供企业级部署方案。
|
3月前
|
机器学习/深度学习 算法 安全
差分隐私机器学习:通过添加噪声让模型更安全,也更智能
本文探讨在敏感数据上应用差分隐私(DP)进行机器学习的挑战与实践。通过模拟DP-SGD算法,在模型训练中注入噪声以保护个人隐私。实验表明,该方法在保持71%准确率和0.79 AUC的同时,具备良好泛化能力,但也带来少数类预测精度下降的问题。研究强调差分隐私应作为模型设计的核心考量,而非事后补救,并提出在参数调优、扰动策略选择和隐私预算管理等方面的优化路径。
254 3
差分隐私机器学习:通过添加噪声让模型更安全,也更智能
|
3月前
|
机器学习/深度学习 分布式计算 Java
Java 大视界 -- Java 大数据机器学习模型在遥感图像土地利用分类中的优化与应用(199)
本文探讨了Java大数据与机器学习模型在遥感图像土地利用分类中的优化与应用。面对传统方法效率低、精度差的问题,结合Hadoop、Spark与深度学习框架,实现了高效、精准的分类。通过实际案例展示了Java在数据处理、模型融合与参数调优中的强大能力,推动遥感图像分类迈向新高度。

热门文章

最新文章

相关产品

  • 人工智能平台 PAI