机器学习中的数学原理——感知机模型

本文涉及的产品
模型在线服务 PAI-EAS,A10/V100等 500元 1个月
模型训练 PAI-DLC,5000CU*H 3个月
交互式建模 PAI-DSW,5000CU*H 3个月
简介: 机器学习中的数学原理——感知机模型

一、什么是感知机

感知机是二分类的线性分类模型输入为实例的特征向量,输出为实例的类别(取+1和-1)。感知机目的在求一个可以将实例分开的超平面,为了求它,我们用到基于误分类的损失函数和梯度下降的优化策略。

二、模型分析

之前的学习中,我们学习了权重向量的概念,明白了只要找到权重向量,就能够找到那条分割线,所有现在的问题来到了,我们应该怎么样找到权重向量呢?基本做法和回归时相同:将权重向量用作参数,创建更新表达式来更新参数。接下来,我要说明的就是被称为感知机(perceptron) 的模型。 感知机是非常简单的模型,基本不会应用在实际的问题中。 但它是神经网络和深度学习的基础模型,所以记住它没坏处。

感知机是接受多个输入后将每个值与各自的权重相乘,最后输出总和的模型。人们常用这样的图来表示它:

和我们之前说到的向量的内积很相似,这次我们从图像的角度去理解。在介绍参数更新表达式之前,我们最好做一些准备工作,我们可以先理解这一部分,磨刀不误砍柴工。

2.1训练数据的准备

我们依然以图像的横纵分类为探索问题,设表示宽的轴为 x1、表示高的轴为 x2,用 y 来 表示图像是横向还是纵向的,横向的值为 1、纵向的值为 −1。我们将其画在表里:

接下来,根据参数向量 x 来判断图像是横向还是纵向的函 数,即返回 1 或者 −1 的函数 fw(x)的定义如下。这个函数被称为判别函数。

也就是说,这是根据内积的符号来给出不同返回值的函数,这样就可以判断图像是横向还是纵向的。如果不理解也没有关系,我们对上面这句话再深入理解一下:

与权重向量 w 的内积为负的向量 x 是 什么样的向量呢?用图形来解释更容易理解,所以我们利用这个 包含 cos 的表达式来思考。

之前我们说过|w| 和 |x| 必定为正数,所以决定内积符号的是 cos θ ,我们回忆一下cos θ 的图,它什么时候为 负呢?

在 90◦ < θ < 270◦ 的时候 cos θ 为负,与权重向量 w 之间的夹角为 θ,在 90◦ < θ < 270◦ 范围内的所有 向量都符合条件,所以就在这条直线下面、与权重向量方向相反的这个区域

同理,我们也可以得到使内积为正的向量

所以可以根据内积的正负来分割内积是衡量向量之间相似程度的指标。结果为正,说明二者相似; 为 0 则二者垂直;为负则说明二者不相似。

2.2权重向量的更新表达式

在这个基础上,我们可以这样定义权重向量的更新表达式。

i 在介绍回归的时候也出现过,它指的是训练数据的索引,而不是i 次方的意思,这一点一定要注意。用这个表达式重复处理所有训练数据,更新权重向量。

虽然表达式整体看上去 乱七八糟的,但是一部分一部分分解来看就不那么难了。好好地 想清楚各部分的含义,再慢慢理解整体含义就好了。之前我们也是这么做的

我们先从表达式括号中的 fw(x(i) ) ̸= y(i)开始看,意思是通过判别函数对宽和高的向量 x 进行分类的结果与实际的标签 y不同,也就是说,判别函数的分类结果不正确。那么另外一个 fw(x(i) ) = y(i)就是分类正确。这也就是说,刚才的更新表达式只有在判别函数分类失败的时候 才会更新参数值。

现在着重看一下w := w + y(i) x(i)这个表达式的含义,我们可以结合图形来理解,一边把学习过程实际地画在 图上,一边去考虑它的含义可能就容易理解了。首先在图上随意 画一个权重向量和直线

权重向量是通过随机值来初始化的,上面向量就可以是初始向量。 在这个状态下,假设第一个训练数据是 x(1) = (125, 30),首先我们就用它来更新参数。

现在权重向量 w 和训练数据的向量 x(1) 二者的方向几乎相 反,w 和 x(1) 之间的夹角 θ 的范围是 90◦ < θ < 270◦ ,内积为负。 也就是说,判别函数 fw(x(1) ) 的分类结果为 −1。我们在这里应用刚才的更新表达式。现在 y(1) = 1,所以更新表 达式是这样的,其实就是向量的加法

这个 w + x(1) 就是下一个新的 w,画一条与新的权重向量 垂直的直线,相当于把原来的线旋转了一下,刚才x(1) 与权重向量分居直线两侧,现在它们在同一侧了

这次 θ < 90◦,所以内积为正,判别函数 fw(x) 的分类结果为1。而且x(1) 的标签也为 1,说明分类成功了。这样就可以更新参数的权重向量,刚才处理的是标签值 y = 1 的情况,而对于 y = −1 的情况,只是 更新表达式的向量加法变成了减法而已,做的事情是一样的。

也就是说,虽然有加法和减法的区别,但它们的做法都是在分类失败时更新权重向量,使得直线旋转相应的角度,这就是感知机的学习方法。


相关文章
|
3天前
|
机器学习/深度学习 监控 API
基于云计算的机器学习模型部署与优化
【8月更文第17天】随着云计算技术的发展,越来越多的数据科学家和工程师开始使用云平台来部署和优化机器学习模型。本文将介绍如何在主要的云计算平台上部署机器学习模型,并讨论模型优化策略,如模型压缩、超参数调优以及分布式训练。
19 2
|
3天前
|
机器学习/深度学习 算法 搜索推荐
【机器学习】机器学习的基本概念、算法的工作原理、实际应用案例
机器学习是人工智能的一个分支,它使计算机能够在没有明确编程的情况下从数据中学习并改进其性能。机器学习的目标是让计算机自动学习模式和规律,从而能够对未知数据做出预测或决策。
8 2
|
4天前
|
机器学习/深度学习 JSON API
【Python奇迹】FastAPI框架大显神通:一键部署机器学习模型,让数据预测飞跃至Web舞台,震撼开启智能服务新纪元!
【8月更文挑战第16天】在数据驱动的时代,高效部署机器学习模型至关重要。FastAPI凭借其高性能与灵活性,成为搭建模型API的理想选择。本文详述了从环境准备、模型训练到使用FastAPI部署的全过程。首先,确保安装了Python及相关库(fastapi、uvicorn、scikit-learn)。接着,以线性回归为例,构建了一个预测房价的模型。通过定义FastAPI端点,实现了基于房屋大小预测价格的功能,并介绍了如何运行服务器及测试API。最终,用户可通过HTTP请求获取预测结果,极大地提升了模型的实用性和集成性。
16 1
|
6天前
|
机器学习/深度学习 人工智能 算法
探索机器学习中的模型优化策略
【8月更文挑战第14天】在机器学习领域,模型的优化是提升预测性能的关键步骤。本文将深入探讨几种有效的模型优化策略,包括超参数调优、正则化方法以及集成学习技术。通过这些策略的应用,可以显著提高模型的泛化能力,减少过拟合现象,并增强模型对新数据的适应能力。
|
7天前
|
机器学习/深度学习 人工智能 关系型数据库
【机器学习】Qwen2大模型原理、训练及推理部署实战
【机器学习】Qwen2大模型原理、训练及推理部署实战
44 0
【机器学习】Qwen2大模型原理、训练及推理部署实战
|
11天前
|
机器学习/深度学习 算法 数据可视化
【机器学习】机器学习中的人工神经元模型有哪些?
本文概述了多种人工神经元模型,包括线性神经元、非线性神经元、自适应线性神经元(ADALINE)、感知机神经元、McCulloch-Pitts神经元、径向基函数神经元(RBF)、径向基概率神经元(RBPNN)、模糊神经元、自组织映射神经元(SOM)、CMAC神经元、LIF神经元、Izhikevich神经元、Spiking神经元、Swish神经元和Boltzmann神经元,各自的特点和应用领域,为理解神经网络中神经元的多样性和适应性提供了基础。
15 4
|
14天前
|
机器学习/深度学习 运维 算法
深入探索机器学习中的支持向量机(SVM)算法:原理、应用与Python代码示例全面解析
【8月更文挑战第6天】在机器学习领域,支持向量机(SVM)犹如璀璨明珠。它是一种强大的监督学习算法,在分类、回归及异常检测中表现出色。SVM通过在高维空间寻找最大间隔超平面来分隔不同类别的数据,提升模型泛化能力。为处理非线性问题,引入了核函数将数据映射到高维空间。SVM在文本分类、图像识别等多个领域有广泛应用,展现出高度灵活性和适应性。
67 2
|
14天前
|
机器学习/深度学习 数据采集 算法
【机器学习】K-Means聚类的执行过程?优缺点?有哪些改进的模型?
K-Means聚类的执行过程、优缺点,以及改进模型,包括K-Means++和ISODATA算法,旨在解决传统K-Means算法在确定初始K值、收敛到局部最优和对噪声敏感等问题上的局限性。
33 2
|
14天前
|
机器学习/深度学习 算法 数据挖掘
|
3天前
|
机器学习/深度学习 搜索推荐 数据挖掘
【深度解析】超越RMSE和MSE:揭秘更多机器学习模型性能指标,助你成为数据分析高手!
【8月更文挑战第17天】本文探讨机器学习模型评估中的关键性能指标。从均方误差(MSE)和均方根误差(RMSE)入手,这两种指标对较大预测偏差敏感,适用于回归任务。通过示例代码展示如何计算这些指标及其它如平均绝对误差(MAE)和决定系数(R²)。此外,文章还介绍了分类任务中的准确率、精确率、召回率和F1分数,并通过实例说明这些指标的计算方法。最后,强调根据应用场景选择合适的性能指标的重要性。
10 0

相关产品

  • 人工智能平台 PAI