基于改进粒子群算法的混合储能系统容量优化(Matlab代码实现)

简介: 基于改进粒子群算法的混合储能系统容量优化(Matlab代码实现)


👨‍🎓个人主页:研学社的博客

💥💥💞💞欢迎来到本博客❤️❤️💥💥



🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。



⛳️座右铭:行百里者,半于九十。


📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 文献来源

🌈4 Matlab代码及文章讲解



💥1 概述

摘要: 为了调高风光互补发电储能系统的经济性减少其运行费用研究风光互补发电储能系统的容量优化配置模型,探讨粒子群算法的改进及混合储能容量优化方法首先通过对全生命周期费用静态模型的介绍利用蓄电池和超级电容器作为风光互补系统混合储能装置,以其全生命周期费用最小为目标以系统的缺电率等运行指标为约束条件,建立了一种混合储能系统容量优化配置模型其次通过优化不对称加速因子进而改进了粒子群算法,最后利用算例在 Matlab 中进行了仿真与求解结果表明该方法不仅优化了蓄电池的工作状态,降低了储能系统的全生命周期费用,而且加快了收敛速度

关键词: 风光互补发电系统; 超级电容器; 混合储能; 粒子群算法; 加速因子

由于其优良的节能减排价值风力发电和光伏发电近年来发展迅速,在风光资源等较为充足的地

设立了一些风光互补发电系统1 - 3但是由于风、光存在不稳定性和间歇性等特点,需要在风光互补发电系统中配置储能系统来平抑功率的波动。常用的储能装置包括电容器和蓄电池,蓄电池的能量比高,方便长时间存储电能,能增加整个发电系统的能量调节范围,但蓄电池的功率密度低、循环寿命短、有一定的环境污染,并且风、光的不稳定和间歇性等问题会加大系统中储能部分的费用; 超级电容器功率密度大、充放电速度快、循环寿命长,有助于抑制系统的短时功率波动。为优化蓄电池充放电状态,显著减少蓄电池充电和放电次数,延长其使用寿命,可将蓄电池和超级电容器混合做为储能装置,实现互补,称之为混合储能系统[4 - 6]。为了进一步提高

储能系统的经济性国内外很多学者开展了储能系统容量配置的大量研究,但是大部分只是考虑了储能器件的初次购置费用,而未考虑储能装置使用过程中的安装、维护以及废弃等方面所需费用即全生命周期费用[7 - 10因此以储能装置的全生命周期费用为优化目标,通过算法改进合理配置蓄电池和超级电容器的个数,优化容量配置成为风光互补发电混合储能系统的研究方向之一,特别是以全生命周期费用最小为目标,建立风光互补混合储能系统容量优化配置模型和算法研究。

image.gif

image.gif

📚2 运行结果

原文结果:

复现结果图:

部分代码:

%% funm

function y=funm(pop)

Ew=[277.6  238.5  243.4  240.4  238.5  222.2  208.8  205.8  205.7  236.3  265.4  310.7];%风电每个月发出的电量

Es=[31.3  37.8  54.8  60.63  69.93  67.07  65.03  62.02  59.92  43.6  31.47  26.74];%太阳能每个月发出的电量

El=[294.5  266  285  273  294.5  283  295  281  282  294  285  299];%负荷每个月发出的电量

yitac=0.95;%逆变器功率转换效率

delE=(Ew+Es)*yitac-El;%功率缺额(发电量-负荷): ΔE = (E w (k) + E s (k))η c - E L (k)

Eb=zeros(1,12);

Ec=zeros(1,12);

Elps=0;%缺电量

for k=1:12

   if delE(k)>0 %发电发得多

       if k == 1

          [Ebt,Ect]=pro1(delE(k),pop,0,0);%pro1

       else

           [Ebt,Ect]=pro1(delE(k),pop,Eb(k-1),Ec(k-1));

       end

       Eb(k)=Ebt;

       Ec(k)=Ect;

   else

       delE(k)=-1*delE(k);

       if k == 1

           [Ebt,Ect,Elps]=pro2(delE(k),pop,Elps,0,0);%pro2

       else

           [Ebt,Ect,Elps]=pro2(delE(k),pop,Elps,Eb(k-1),Ec(k-1));

       end

       Eb(k)=Ebt;

       Ec(k)=Ect;

   end

end

y=0.288*pop(1)+0.0257*pop(2);

if 0.000384*pop(1) + 3.165*(10^(-5))*pop(2) < max(El)*0.65

   y=y+inf;

end

for k=1:12

 if Eb(k) > 0.7 * delE(k)

     y=y+inf;

 end

end

LPSP=Elps/sum(El);

if LPSP > 0.05

   y=y+inf;

end

LPSP

 

🎉3 文献来源

部分理论来源于网络,如有侵权请联系删除。

[1]杨国华,朱向芬,马玉娟,韩世军,王金梅,王鹏珍.基于改进粒子群算法的混合储能系统容量优化[J].电测与仪表,2015,52(23):1-5+10.

🌈4 Matlab代码及文章讲解

 https://ttaozhi.com/t/p.html?id=ktfB8dorXd

相关文章
|
25天前
|
算法 安全 数据安全/隐私保护
基于game-based算法的动态频谱访问matlab仿真
本算法展示了在认知无线电网络中,通过游戏理论优化动态频谱访问,提高频谱利用率和物理层安全性。程序运行效果包括负载因子、传输功率、信噪比对用户效用和保密率的影响分析。软件版本:Matlab 2022a。完整代码包含详细中文注释和操作视频。
|
10天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
11天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
12天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
11天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
11天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
30 3
|
22天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
23天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。
|
28天前
|
存储
基于遗传算法的智能天线最佳阵列因子计算matlab仿真
本课题探讨基于遗传算法优化智能天线阵列因子,以提升无线通信系统性能,包括信号质量、干扰抑制及定位精度。通过MATLAB2022a实现的核心程序,展示了遗传算法在寻找最优阵列因子上的应用,显著改善了天线接收功率。
|
16天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于GA-PSO-SVM算法的混沌背景下微弱信号检测matlab仿真
本项目基于MATLAB 2022a,展示了SVM、PSO、GA-PSO-SVM在混沌背景下微弱信号检测中的性能对比。核心程序包含详细中文注释和操作步骤视频。GA-PSO-SVM算法通过遗传算法和粒子群优化算法优化SVM参数,提高信号检测的准确性和鲁棒性,尤其适用于低信噪比环境。