含分布式光伏的配电网集群划分和集群电压协调控制(Matlab代码实现)

简介: 含分布式光伏的配电网集群划分和集群电压协调控制(Matlab代码实现)

👨‍🎓个人主页:研学社的博客

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 文献来源

🌈4 Matlab代码及文章讲解


image.gif

💥1 概述

摘要:针对配电网中高渗透率分布式光伏接入引起的电压越限问题,本文提出了一种基于网络划分的双层电压控制策略,通过优化光伏变流器的有功和无功输出功率实现光伏发电损失和线路有功损耗最小的优化目标。基于社团检测算法,本文提出了综合考虑电气距离和区域电压调节能力的集群性能指标和网络划分方法。在集群划分基础上,本文提出包含群内自治优化和群间分布式协调的双层电压控制策略,利用其在不同时间尺度上的配合实现了配电网全局电压的快速优化控制。集群自治优化控制通过交替更新群内最优解和虚拟平衡节点电压实现群内电压的实时快速控制。长时间尺度的群间分布式协调控制基于交换方向乘子法,通过相邻集群的有限边界数据交换实现对分布式光伏输出功率的全局优化控制。所提方法被应用于中国安徽金寨的一条实际10.5kV线路和IEEE 123节点系统以验证所提方法的有效性和可行性。

关键词:网络划分;分布式光伏;集群电压控制;分布式优化;有功缩减。

随着分布式光伏发电在配电网中渗透率的提高,配电网的稳定运行面临诸多挑战,其中潮流倒送和过电压问题尤为显著。这不但限制了配电网接纳分布式光伏的能力,而且严重威胁配电网的安全稳定运行。中国安徽金寨地区推行的“光伏扶贫”项目,在配电网中接入了大量的分布式光伏,使得当地配电网面临的调压问题日趋严重。

目前的电压控制方式主要分为四大类[1]:1)集中控制[2],以全局优化为目标,统一调配可控资源,但投资成本高、通讯负担重;2)就地控制[3],具有快响应速度和低投资成本优势,但调压能力有限;3)分布式控制[4],通过节点间的协调,改善了电压调节能力和投资成本,但优化效果有限;4)分散式控制[5],在集群划分基础上利用分群自治和群间协调能够综合集中控制和分布式控制的优势,具有巨大潜力。

在集群划分方面,文献[6]提出一种基于k-means聚类算法的网络划分方法,用于降低配电网辅助服务分析的计算量。聚类算法[7][8]被应用于集群划分时,通常需要根据研究目标对距离指标进行定义。文献[6]、[9]、[10]、[11]和[12]分别用地理距离、线路电阻、无功电压灵敏度、有功相角灵敏度和功率传递分布因子定义节点间距离。除聚类算法外,智能启发式算法也被用于网络的集群划分,如遗传算法[13]、贪婪算法[14]等。文献[15]提出一种多属性集群综合性能指标,囊括电气距离、集群大小、集群数量和集群连通性等指标,并利用混合k-means/进化算法优化综合性能指标来指导电力网络的集群划分。基于社团检测算法,文献[14]提出改进的模块化指标,综合考虑节点间无功电压灵敏度和区域无功功率平衡,并结合贪婪算法进行网络划分。现有文献的集群划分方法没有考虑节点有功注入功率对电压幅值的影响,且缺乏对群内分布式光伏调压能力的评估。

在集群电压控制方面,文献[14]采用粒子群优化算法进行集群内部优化控制,优化目标为群内光伏的无功补偿量或有功缩减量最小,各集群优化自治顺序按电压偏移严重程度排列,但这种群间协调方式会降低电压控制速度且易使资源利用不充分。文献[17]、[18]和[19]采用交换方向乘子法通过集群间的分解协调实现全局电压优化控制。除交换方向乘子法外,对偶次梯度算法[20]也是常用的分布式优化算法,但其收敛速度不如交换方向乘子法。因电力系统的电压优化控制属于非凸NP难题,文献[17]、[18]和[19]分别利用二阶锥松弛、半定规划松弛和直流潮流约分对优化模型进行凸化处理,但三者的优化目标仅为配电网有功损耗最小。对于含高渗透率分布式光伏的配电网,仅以网络有功损耗为目标优化光伏输出有功和无功功率会造成光伏发电损失。在文献[18]的基础上,文献[21]采用分群分层的控制架构对配电网有功损耗与光伏发电损失进行分布式优化,但半定规划松弛引入大量额外变量,且分层分群联合优化的控制架构会降低电压控制速度。

本文以全局电压的低成本快速控制为目标,提出基于电气距离和区域电压调节能力的集群综合性能指标和网络划分方法,并在集群划分基础上,提出结合集群自治优化控制与群间分布式协调控制的双层电压控制策略,通过优化光伏变流器的有功和无功输出功率最小化光伏发电损失和配电线路有功损耗。本文主要贡献包括:

1)对于高比例分布式光伏接入的配电网,仅依靠无功功率补偿不足以完全解决系统的过电压问题,必要时需缩减光伏的有功输出功率,但现有的集群划分指标很少考虑节点有功注入功率对电压幅值的影响。本文所提出的集群综合性能指标同时考虑节点有功和无功功率对电压幅值的灵敏度,并权衡各区域调压资源的分布,确保群内可控资源能够快速有效地解决群内电压越限。

2所提集群自治优化控制,采用交替更新群内最优解和虚拟平衡节点电压的方式实现群内电压的优化自治,仅需依赖群内量测数据而无需群间通信协调。这样不仅降低了高比例分布式电源接入配电网的电压控制复杂度和通信压力,还提高了电压控制速度。

3)本文采用直流潮流方程和交换方向乘子法实现多集群光伏发电损失和线路有功损耗最小化模型的凸化处理和分布式求解。相较于半定规划松弛和二阶锥松弛,直流潮流约分处理后的优化模型更易求解,更适电压灵敏度和区域无功功率平衡,并结合贪婪算法进行网络划分。现有文献的集群划分方法没有考虑节点有功注入功率对电压幅值的影响,且缺乏对群内分布式光伏调压能力的评估。

在集群电压控制方面,文献[14]采用粒子群优化算法进行集群内部优化控制,优化目标为群内光伏的无功补偿量或有功缩减量最小,各集群优化自治顺序按电压偏移严重程度排列,但这种群间协调方式会降低电压控制速度且易使资源利用不充分。文献[17]、[18]和[19]采用交换方向乘子法通过集群间的分解协调实现全局电压优化控制。除交换方向乘子法外,对偶次梯度算法[20]也是常用的分布式优化算法,但其收敛速度不如交换方向乘子法。因电力系统的电压优化控制属于非凸NP难题,文献[17]、[18]和[19]分别利用二阶锥松弛、半定规划松弛和直流潮流约分对优化模型进行凸化处理,但三者的优化目标仅为配电网有功损耗最小。对于含高渗透率分布式光伏的配电网,仅以网络有功损耗为目标优化光伏输出有功和无功功率会造成光伏发电损失。在文献[18]的基础上,文献[21]采用分群分层的控制架构对配电网有功损耗与光伏发电损失进行分布式优化,但半定规划松弛引入大量额外变量,且分层分群联合优化的控制架构会降低电压控制速度。

本文以全局电压的低成本快速控制为目标,提出基于电气距离和区域电压调节能力的集群综合性能指标和网络划分方法,并在集群划分基础上,提出结合集群自治优化控制与群间分布式协调控制的双层电压控制策略,通过优化光伏变流器的有功和无功输出功率最小化光伏发电损失和配电线路有功损耗。本文主要贡献包括:

1)对于高比例分布式光伏接入的配电网,仅依靠无功功率补偿不足以完全解决系统的过电压问题,必要时需缩减光伏的有功输出功率,但现有的集群划分指标很少考虑节点有功注入功率对电压幅值的影响。本文所提出的集群综合性能指标同时考虑节点有功和无功功率对电压幅值的灵敏度,并权衡各区域调压资源的分布,确保群内可控资源能够快速有效地解决群内电压越限。

2所提集群自治优化控制,采用交替更新群内最优解和虚拟平衡节点电压的方式实现群内电压的优化自治,仅需依赖群内量测数据而无需群间通信协调。这样不仅降低了高比例分布式电源接入配电网的电压控制复杂度和通信压力,还提高了电压控制速度。

3)本文采用直流潮流方程和交换方向乘子法实现多集群光伏发电损失和线路有功损耗最小化模型的凸化处理和分布式求解。相较于半定规划松弛和二阶锥松弛,直流潮流约分处理后的优化模型更易求解,更适用于海量分布式光伏接入的配电网。针对直流潮流约分造成的计算精确度问题,在集群并行优化后各集群采用Distflow潮流方程更新边界数据以弥补直流潮流方程的计算偏差。

本文布局如下:第二部分为集群综合性能指标和集群划分方法的介绍。第三部分介绍分区自治优化控制和群间分布式协调优化的相关内容。第四部分为集群划分方法和所提集群电压优化控制的仿真验证。第五部分为本文结论。

image.gif

image.gif

📚2 运行结果

image.gif

image.gif编辑

image.gif

image.gif

image.gif

🎉3 文献来源

部分理论来源于网络,如有侵权请联系删除。

[1]Y. Chai, L. Guo, C. Wang, Z. Zhao, X. Du and J. Pan, "Network Partition and Voltage Coordination Control for Distribution Networks With High Penetration of Distributed PV Units," in IEEE Transactions on Power Systems, vol. 33, no. 3, pp. 3396-3407, May 2018, doi: 10.1109/TPWRS.2018.2813400.

🌈4 Matlab代码及文章讲解

https://mbd.pub/o/bread/Y56Yl5pq

相关文章
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
248 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
147 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
117 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
3月前
|
NoSQL Java Redis
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
Redis分布式锁在高并发场景下是重要的技术手段,但其实现过程中常遇到五大深坑:**原子性问题**、**连接耗尽问题**、**锁过期问题**、**锁失效问题**以及**锁分段问题**。这些问题不仅影响系统的稳定性和性能,还可能导致数据不一致。尼恩在实际项目中总结了这些坑,并提供了详细的解决方案,包括使用Lua脚本保证原子性、设置合理的锁过期时间和使用看门狗机制、以及通过锁分段提升性能。这些经验和技巧对面试和实际开发都有很大帮助,值得深入学习和实践。
太惨痛: Redis 分布式锁 5个大坑,又大又深, 如何才能 避开 ?
|
5月前
|
NoSQL Redis
基于Redis的高可用分布式锁——RedLock
这篇文章介绍了基于Redis的高可用分布式锁RedLock的概念、工作流程、获取和释放锁的方法,以及RedLock相比单机锁在高可用性上的优势,同时指出了其在某些特殊场景下的不足,并提到了ZooKeeper作为另一种实现分布式锁的方案。
141 2
基于Redis的高可用分布式锁——RedLock
|
5月前
|
缓存 NoSQL Java
SpringBoot整合Redis、以及缓存穿透、缓存雪崩、缓存击穿的理解分布式情况下如何添加分布式锁 【续篇】
这篇文章是关于如何在SpringBoot应用中整合Redis并处理分布式场景下的缓存问题,包括缓存穿透、缓存雪崩和缓存击穿。文章详细讨论了在分布式情况下如何添加分布式锁来解决缓存击穿问题,提供了加锁和解锁的实现过程,并展示了使用JMeter进行压力测试来验证锁机制有效性的方法。
SpringBoot整合Redis、以及缓存穿透、缓存雪崩、缓存击穿的理解分布式情况下如何添加分布式锁 【续篇】
|
1月前
|
存储 NoSQL Java
使用lock4j-redis-template-spring-boot-starter实现redis分布式锁
通过使用 `lock4j-redis-template-spring-boot-starter`,我们可以轻松实现 Redis 分布式锁,从而解决分布式系统中多个实例并发访问共享资源的问题。合理配置和使用分布式锁,可以有效提高系统的稳定性和数据的一致性。希望本文对你在实际项目中使用 Redis 分布式锁有所帮助。
112 5
|
2月前
|
NoSQL Java 数据处理
基于Redis海量数据场景分布式ID架构实践
【11月更文挑战第30天】在现代分布式系统中,生成全局唯一的ID是一个常见且重要的需求。在微服务架构中,各个服务可能需要生成唯一标识符,如用户ID、订单ID等。传统的自增ID已经无法满足在集群环境下保持唯一性的要求,而分布式ID解决方案能够确保即使在多个实例间也能生成全局唯一的标识符。本文将深入探讨如何利用Redis实现分布式ID生成,并通过Java语言展示多个示例,同时分析每个实践方案的优缺点。
74 8
|
2月前
|
NoSQL Redis
Redis分布式锁如何实现 ?
Redis分布式锁通过SETNX指令实现,确保仅在键不存在时设置值。此机制用于控制多个线程对共享资源的访问,避免并发冲突。然而,实际应用中需解决死锁、锁超时、归一化、可重入及阻塞等问题,以确保系统的稳定性和可靠性。解决方案包括设置锁超时、引入Watch Dog机制、使用ThreadLocal绑定加解锁操作、实现计数器支持可重入锁以及采用自旋锁思想处理阻塞请求。
64 16
|
2月前
|
缓存 NoSQL PHP
Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出
本文深入探讨了Redis作为PHP缓存解决方案的优势、实现方式及注意事项。Redis凭借其高性能、丰富的数据结构、数据持久化和分布式支持等特点,在提升应用响应速度和处理能力方面表现突出。文章还介绍了Redis在页面缓存、数据缓存和会话缓存等应用场景中的使用,并强调了缓存数据一致性、过期时间设置、容量控制和安全问题的重要性。
46 5