YOLOv5数据集划分

简介: 深度学习,数据集是必不可缺的,在收集到数据集之后,要进行数据集划分处理

数据集标注是深度学习项目中不可获取的一部分,下文从划分数据集到利用标注一条龙讲解

数据集划分

1.以YOLO为例先新建一个文件夹把数据集(图片全部放入)
2.然后新建两个文件夹分别存放数据集(images)和标签(labels)
3.概按照3:1的比例把图片划分为两个文件夹一个为训练集一个为验证集
4.然后在标签的文件夹里分别新建两个文件夹对应于图片文件夹的训练集和验证集
具体文件夹关系如下
在这里插入图片描述

目录
相关文章
|
6月前
|
机器学习/深度学习 JSON 算法
如何在自定义数据集上训练 YOLOv8 实例分割模型
在本文中,我们将介绍微调 YOLOv8-seg 预训练模型的过程,以提高其在特定目标类别上的准确性。Ikomia API简化了计算机视觉工作流的开发过程,允许轻松尝试不同的参数以达到最佳结果。
【yolo训练数据集】标注好的垃圾分类数据集共享
【yolo训练数据集】标注好的垃圾分类数据集共享
2044 117
【yolo训练数据集】标注好的垃圾分类数据集共享
|
数据处理 计算机视觉 Python
【目标检测】指定划分COCO数据集训练(车类,行人类,狗类...)
【目标检测】指定划分COCO数据集训练(车类,行人类,狗类...)
3674 0
|
6月前
|
XML 数据格式 Python
Labelimg标注自己的数据集,及如何划分训练集和验证集,应用于Yolov5
Labelimg标注自己的数据集,及如何划分训练集和验证集,应用于Yolov5
1168 0
|
1月前
|
数据可视化 计算机视觉
训练数据集(一):真实场景下采集的煤矸石目标检测数据集,可直接用于YOLOv5/v6/v7/v8训练
本文介绍了一个用于煤炭与矸石分类的煤矸石目标检测数据集,包含891张训练图片和404张验证图片,分为煤炭、矸石和混合物三类。数据集已标注并划分为训练和验证集,适用于YOLOv5/v6/v7/v8训练。数据集可通过提供的链接下载。
53 1
训练数据集(一):真实场景下采集的煤矸石目标检测数据集,可直接用于YOLOv5/v6/v7/v8训练
|
存储 大数据 Linux
基于 YOLOv8 的自定义数据集训练
基于 YOLOv8 的自定义数据集训练
|
网络安全 开发工具 网络架构
YOLOV7详细解读(四)训练自己的数据集
YOLOV7详细解读(四)训练自己的数据集
764 0
|
XML 数据格式 计算机视觉
|
PyTorch 算法框架/工具
EfficientNet 训练自己的分类数据集
EfficientNet 训练自己的分类数据集
EfficientNet 训练自己的分类数据集
|
文件存储 Python
视频分类数据集转图片分类数据集在vgg16上的分类效果
视频分类数据集转图片分类数据集在vgg16上的分类效果
视频分类数据集转图片分类数据集在vgg16上的分类效果