【电动车】基于多目标优化遗传算法NSGAII的峰谷分时电价引导下的电动汽车充电负荷优化研究(Matlab代码实现)

简介: 【电动车】基于多目标优化遗传算法NSGAII的峰谷分时电价引导下的电动汽车充电负荷优化研究(Matlab代码实现)

👨‍🎓个人主页:研学社的博客

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 文献来源

🌈4 Matlab代码实现


image.gif

💥1 概述

文献来源:

image.gif编辑

摘要:在研究电动汽车用户充电需求的前提下,利用蒙特卡洛方法对2种不同充电方式进行模拟并对其进行分析;分析用户响应度对电动汽车有序充电的影响,建立峰谷分时电价对电动汽车负荷影响的模型,在模拟出电动汽车无序充电负荷的基础上,用实际案例对模型进行验证,利用多目标优化遗传算法进行求解,验证峰谷分时电价对电网负荷优化的有效性。

关键词:电动汽车;分时电价;有序充电;电价响应;

      近年来在国内外石油资源紧缺环境问题日益严重的情况下,电动汽车因具有显著的经济性与环境性,其发展迅速在中国2030电动汽车数量将达到6000万辆随着电动汽车数量的不断增加,由于其负荷在时间与空间上所具有的不确定性,使得当大规模电动汽车并网进行充电时会对电网造成负荷冲击。虽然会加剧负荷的波动性与随机性,但是若能够将电动汽车负荷好好利用作为可调度负荷资源,则能够抑制电网系统的峰谷差为电网安全稳定运行提供更强有力的保障因此实现电动汽车充电负荷的合理控制,避免电动汽车在系统负荷高峰时大量充电造成尖峰,高效的抑制峰谷负荷差,是电网面临的重要挑战

     目前国内有很多学者参与了峰谷分时电价引导电动汽车用户参与有序充电的研究,文献[6提出根据电动汽车类型的不同采用相适应的充电负荷计算方法,对电动汽车充电负荷进行较为精准的预测;文献[建立电动汽车负荷最优潮流模型通过调配各机组出力以优化系统发电成本在用户侧将电池损耗和充电等待时间成本计入用户充电费用中,运用双层模型进行优化;文献从电动汽车充电运营商方面考虑,利用动态响应峰谷电价形成有序充电,但文章未能考虑负荷波动造成电网的不稳定,大量电动汽车在后半夜充电又造成另一个用电高峰;文献[以电网峰谷差为目标函数利用电网电价时段的划分来平抑区域配电网负荷的波动,使得电网安全稳定的运行。

    该文在以上研究的基础上,根据电动汽车负荷影响因素进行分析,利用蒙特卡洛方法模拟电动汽车无序充电和有序充电负荷曲线,设立不同的响应系数以研究用户参与有序充电时负荷曲线的特点。研究峰谷分时电价价格弹性与电动汽车负荷之间的关系,建立峰谷分时电价优化模型利用多目标优化遗传算法对模型进行求解,分析峰谷电价对电网负荷以及用户的影响。

流程图:

image.gif

📚2 运行结果

原文结果:

image.gif

复现结果图:

image.gif

image.gif

🎉3 文献来源

部分理论来源于网络,如有侵权请联系删除。

[1]欧名勇,陈仲伟,谭玉东,文明,周志成.基于峰谷分时电价引导下的电动汽车充电负荷优化[J].电力科学与技术学报,2020,35(05):54-59.DOI:10.19781/j.issn.1673-9140.2020.05.007.

🌈4 Matlab代码实现

链接:https://pan.baidu.com/s/1g81v-oUZ_DI3ofd-yR4NRQ 

提取码:xcvm

--来自百度网盘超级会员V3的分享

相关文章
|
4天前
|
机器学习/深度学习 存储 算法
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
近端策略优化(PPO)是深度强化学习中高效的策略优化方法,广泛应用于大语言模型的RLHF训练。PPO通过引入策略更新约束机制,平衡了更新幅度,提升了训练稳定性。其核心思想是在优势演员-评论家方法的基础上,采用裁剪和非裁剪项组成的替代目标函数,限制策略比率在[1-ϵ, 1+ϵ]区间内,防止过大的策略更新。本文详细探讨了PPO的基本原理、损失函数设计及PyTorch实现流程,提供了完整的代码示例。
106 10
近端策略优化(PPO)算法的理论基础与PyTorch代码详解
|
1月前
|
算法 数据可视化 安全
基于DWA优化算法的机器人路径规划matlab仿真
本项目基于DWA优化算法实现机器人路径规划的MATLAB仿真,适用于动态环境下的自主导航。使用MATLAB2022A版本运行,展示路径规划和预测结果。核心代码通过散点图和轨迹图可视化路径点及预测路径。DWA算法通过定义速度空间、采样候选动作并评估其优劣(目标方向性、障碍物距离、速度一致性),实时调整机器人运动参数,确保安全避障并接近目标。
147 68
|
3天前
|
传感器 算法 物联网
基于粒子群算法的网络最优节点部署优化matlab仿真
本项目基于粒子群优化(PSO)算法,实现WSN网络节点的最优部署,以最大化节点覆盖范围。使用MATLAB2022A进行开发与测试,展示了优化后的节点分布及其覆盖范围。核心代码通过定义目标函数和约束条件,利用PSO算法迭代搜索最佳节点位置,并绘制优化结果图。PSO算法灵感源于鸟群觅食行为,适用于连续和离散空间的优化问题,在通信网络、物联网等领域有广泛应用。该算法通过模拟粒子群体智慧,高效逼近最优解,提升网络性能。
|
3天前
|
机器学习/深度学习 数据采集 算法
基于GWO灰狼优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a,展示了时间序列预测算法的运行效果(无水印)。核心程序包含详细中文注释和操作视频。算法采用CNN-GRU-SAM网络,结合灰狼优化(GWO),通过卷积层提取局部特征、GRU处理长期依赖、自注意力机制捕捉全局特征,最终实现复杂非线性时间序列的高效预测。
|
1天前
|
算法
基于SOA海鸥优化算法的三维曲面最高点搜索matlab仿真
本程序基于海鸥优化算法(SOA)进行三维曲面最高点搜索的MATLAB仿真,输出收敛曲线和搜索结果。使用MATLAB2022A版本运行,核心代码实现种群初始化、适应度计算、交叉变异等操作。SOA模拟海鸥觅食行为,通过搜索飞行、跟随飞行和掠食飞行三种策略高效探索解空间,找到全局最优解。
|
1月前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
1月前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
1月前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
1月前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
1月前
|
算法
基于RRT优化算法的机械臂路径规划和避障matlab仿真
本课题基于RRT优化算法实现机械臂路径规划与避障。通过MATLAB2022a进行仿真,先利用RRT算法计算避障路径,再将路径平滑处理,并转换为机械臂的关节角度序列,确保机械臂在复杂环境中无碰撞移动。系统原理包括随机生成树结构探索空间、直线扩展与障碍物检测等步骤,最终实现高效路径规划。