m基于GA遗传优化的GRNN广义回归神经网络销售数据预测算法matlab仿真

本文涉及的产品
全球加速 GA,每月750个小时 15CU
简介: m基于GA遗传优化的GRNN广义回归神经网络销售数据预测算法matlab仿真

1.算法描述

  随着市场经济的发展和全球化,国内外企业面临着越来越残酷的市场竞争,要想赢得竞争,赢得市场,从事商品销售的单位必须在短时间内,以最低的成本将产品提供给客户,这使得对市场的变化和本身业务的发展前景进行估计。

    制冷压缩机的主要功能是将低压气体提升为高压气体,是制冷设备的核心部件,其广泛应用在空调冰箱等各类电器设备中。因此制冷压缩机有着十分广泛的市场前景,为了获得较为准确的市场预期,我们需要使用已有的理论知识和科学方法,对制冷压缩机的市场发展趋势进行预先估计,从而进一步减少风险,避免企业决策的盲目性。

  遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律演化而来的随机化搜索方法。它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。它是现代有关智能计算中的关键技术。

   算法的算法流程图如下图所示:

1.png

从图1的算法流程图可知,遗传算法,其主要步骤如下所示:

    步骤一、选择问题解的一个编码,给出一个包含N个染色体的初始种群。

    步骤二、对种群中的每一个染色体 ,分别计算其对应的适应函数值。

    步骤三、若停止规则满足,则算法停止,否则计算概率P,并以此概率分布,从中随机选取N个染色体构成一个新的种群。

    步骤四、通过交叉(交叉概率为),得到N个染色体的交叉概率值。

    步骤五、以较小的变异概率,使得某染色体的一个基因发生变异,形成新的群体重复第步骤二步。

   对GRNN网络来说,当确定了学习样本,则相应的网络结构和各神经元之间的连接权值也就确定出来,网络的训练实际上只是确定平滑参数的过程。GRNN网络中的即相当于径向基函数的分布密度SPREAD。一般情况下,SPREAD越大,逼近过程就越平滑,但误差也增大;SPREAD越小,函数逼近越精确,但逼近过程也越不平滑。

  平滑参数的取值会在很大程度上影响着广义回归神经网络的预测性能,根据式子:

2.png
3.png

2.仿真效果预览
matlab2022a仿真结果如下:

4.png
5.png
6.png
7.png
8.png

3.MATLAB核心程序

data0    = data;
%归一化
Xmin     = min(data);
Xmax     = max(data);
data     = (data-min(data))/(max(data)-min(data));
 
figure;
plot(data(1:12),'b-x');
hold on
plot(data(13:24),'r-s');
hold on
plot(data(25:36),'k-o');
hold on
legend('2010销售量','2011销售量','2012销售量');
xlabel('Times(month)');
ylabel('销售量');
axis([0,12,0,1]);
grid on;
figure;
plot(data0(1:12),'b-x');
hold on
plot(data0(13:24),'r-s');
hold on
plot(data0(25:36),'k-o');
hold on
legend('2010销售量','2011销售量','2012销售量');
xlabel('Times(month)');
ylabel('销售量');
axis([0,12,0,1500]);
grid on;
%%
%使用遗传算法获得最优的平滑参数
MAXGEN = 30;
NIND   = 50;
Chrom  = crtbp(NIND,1*10);
 
%14个变量的区间
%优化变量如下:
%多边形个数N,1~100
Areas  = [0;
          1];
 
FieldD = [rep([10],[1,1]);Areas;rep([0;0;0;0],[1,1])];
 
alpha  = zeros(NIND,1);
alphas = zeros(MAXGEN,1);
 
 
for a=1:1:NIND 
    a
    alpha(a)= 0.5;       
    %计算对应的目标值
    Result = func_obj(alpha(a),data,Xmax,Xmin);
    E      = mean(abs(Result-data0(25:36)));
    J(a,1) = E;
end
Objv  = J;
gen   = 0; 
 
while gen < MAXGEN;   
      gen
      FitnV=ranking(Objv);    
      Selch=select('sus',Chrom,FitnV);    
      Selch=recombin('xovsp', Selch,0.95);   
      Selch=mut( Selch,0.05);   
      phen1=bs2rv(Selch,FieldD);   
      
      for a=1:NIND  
          alpha(a)= phen1(a,1);      
          %计算对应的目标值
          Result  = func_obj(alpha(a),data,Xmax,Xmin);
          E       = mean(abs(Result-data0(25:36)));
          JJ(a,1) = E;
      end 
      Objvsel      = JJ;    
      [Chrom,Objv] = reins(Chrom,Selch,1,1,Objv,Objvsel);   
      gen          = gen + 1; 
      Error(gen)   = mean(JJ);
      alphas(gen)  = mean(alpha);
end 
Result  = func_obj(alphas(end),data,Xmax,Xmin);
%画图
figure;
subplot(121)
plot(alphas,'b-o');
hold on;
xlabel('迭代次数');
ylabel('平滑因子');
axis square;
grid on;
 
subplot(122)
plot(Error,'b-o');
hold on;
xlabel('迭代次数');
ylabel('Error');
axis square;
grid on;
 
load NET.mat
Result  = sim(net,1:12);
Result  = Result*(Xmax-Xmin)+Xmin;
 
figure
plot(data0(25:36),'b-o');
hold on
plot(Result,'r-s');
legend('2012销售量','预测值');
xlabel('Times(month)');
ylabel('销售量');
grid on;
 
figure
S = [data0(25:36);Result]';
bar(S);
legend('2012销售量','预测值');
xlabel('Times(month)');
ylabel('销售量');
save Rgrnn.mat Result
A = (Result-data0(25:36))./Result;
A = 100*A';
A
02_021m
相关文章
|
10天前
|
算法
基于MPPT算法的光伏并网发电系统simulink建模与仿真
本课题基于MATLAB/Simulink搭建光伏并网发电系统模型,集成PV模块、MPPT算法、PWM控制与并网电路,实现最大功率跟踪与电能高效并网。通过仿真验证系统在不同环境下的动态响应与稳定性,采用SVPWM与电流闭环控制,确保输出电流与电网同频同相,满足并网电能质量要求。
|
23天前
|
传感器 机器学习/深度学习 算法
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
111 1
|
22天前
|
传感器 机器学习/深度学习 算法
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
【UASNs、AUV】无人机自主水下传感网络中遗传算法的路径规划问题研究(Matlab代码实现)
|
6天前
|
存储 机器学习/深度学习 监控
网络管理监控软件的 C# 区间树性能阈值查询算法
针对网络管理监控软件的高效区间查询需求,本文提出基于区间树的优化方案。传统线性遍历效率低,10万条数据查询超800ms,难以满足实时性要求。区间树以平衡二叉搜索树结构,结合节点最大值剪枝策略,将查询复杂度从O(N)降至O(logN+K),显著提升性能。通过C#实现,支持按指标类型分组建树、增量插入与多维度联合查询,在10万记录下查询耗时仅约2.8ms,内存占用降低35%。测试表明,该方案有效解决高负载场景下的响应延迟问题,助力管理员快速定位异常设备,提升运维效率与系统稳定性。
37 4
|
10天前
|
机器学习/深度学习 算法 数据可视化
基于MVO多元宇宙优化的DBSCAN聚类算法matlab仿真
本程序基于MATLAB实现MVO优化的DBSCAN聚类算法,通过多元宇宙优化自动搜索最优参数Eps与MinPts,提升聚类精度。对比传统DBSCAN,MVO-DBSCAN有效克服参数依赖问题,适应复杂数据分布,增强鲁棒性,适用于非均匀密度数据集的高效聚类分析。
|
12天前
|
机器学习/深度学习 算法
采用蚁群算法对BP神经网络进行优化
使用蚁群算法来优化BP神经网络的权重和偏置,克服传统BP算法容易陷入局部极小值、收敛速度慢、对初始权重敏感等问题。
136 5
|
10天前
|
开发框架 算法 .NET
基于ADMM无穷范数检测算法的MIMO通信系统信号检测MATLAB仿真,对比ML,MMSE,ZF以及LAMA
简介:本文介绍基于ADMM的MIMO信号检测算法,结合无穷范数优化与交替方向乘子法,降低计算复杂度并提升检测性能。涵盖MATLAB 2024b实现效果图、核心代码及详细注释,并对比ML、MMSE、ZF、OCD_MMSE与LAMA等算法。重点分析LAMA基于消息传递的低复杂度优势,适用于大规模MIMO系统,为通信系统检测提供理论支持与实践方案。(238字)
|
16天前
|
机器学习/深度学习 传感器 算法
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
【无人车路径跟踪】基于神经网络的数据驱动迭代学习控制(ILC)算法,用于具有未知模型和重复任务的非线性单输入单输出(SISO)离散时间系统的无人车的路径跟踪(Matlab代码实现)
|
20天前
|
存储 监控 算法
企业电脑监控系统中基于 Go 语言的跳表结构设备数据索引算法研究
本文介绍基于Go语言的跳表算法在企业电脑监控系统中的应用,通过多层索引结构将数据查询、插入、删除操作优化至O(log n),显著提升海量设备数据管理效率,解决传统链表查询延迟问题,实现高效设备状态定位与异常筛选。
65 3
|
22天前
|
算法 数据建模 调度
【INC-MPPT】增量导纳算法追踪光伏的最大功率点用于光伏的并网接入研究(Simulink仿真实现)
【INC-MPPT】增量导纳算法追踪光伏的最大功率点用于光伏的并网接入研究(Simulink仿真实现)

热门文章

最新文章