【推荐系统】TensorFlow复现论文NeuralCF网络结构

简介: 【推荐系统】TensorFlow复现论文NeuralCF网络结构

下图为NeutralCF的模型结构图,总共两个分支,第一个分支为GML,第二个为MLP,GML通路将两个特征的Embedding向量进行内积操作,MLP将两个特征的Embedding的向量进行拼接,然后使用多层感知机进行传播,然后将两个通路输出的向量进行拼接,导入全连接层(输出层),输出Score。

一、导包

import tensorflow as tf
from tensorflow.keras.layers import *
from tensorflow.keras.models import *
from tensorflow.keras.utils import plot_model
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import  MinMaxScaler, LabelEncoder
import itertools
import pandas as pd
import numpy as np
from tqdm import tqdm
from collections import namedtuple
import warnings
warnings.filterwarnings("ignore")

二、读取数据

# 读取数据,NCF使用的特征只有user_id和item_id
rnames = ['user_id','movie_id','rating','timestamp']
data = pd.read_csv('./data/ml-1m/ratings.dat', sep='::', engine='python', names=rnames)

三、特征编码处理

lbe = LabelEncoder()
data['user_id'] = lbe.fit_transform(data['user_id'])
data['movie_id'] = lbe.fit_transform(data['movie_id'])
train_data = data[['user_id', 'movie_id']]
train_data['label'] = data['rating']

四、使用具名元组为特征进行处理

SparseFeat = namedtuple('SparseFeat', ['name', 'vocabulary_size', 'embedding_dim'])
DenseFeat = namedtuple('DenseFeat', ['name', 'dimension'])
dnn_features_columns = [SparseFeat('user_id', train_data['user_id'].nunique(), 8),
                        SparseFeat('movie_id', train_data['movie_id'].nunique(), 8)]

五、构建模型

5.1 输入层

def build_input_layers(dnn_features_columns):
    dense_input_dict, sparse_input_dict = {}, {}
    for f in dnn_features_columns:
        if isinstance(f, SparseFeat):
            sparse_input_dict[f.name] = Input(shape=(1), name=f.name)
        elif isinstance(f, DenseFeat):
            dense_input_dict[f.name] = Input(shape=(f.dimension), name=f.name)
    return dense_input_dict, sparse_input_dict

5.2 Embedding层

def build_embedding_layers(dnn_features_columns, sparse_input_dict, prefix="", is_linear=True):
    embedding_layers_dict = {}
    sparse_feature_columns = list(filter(lambda x: isinstance(x, SparseFeat), dnn_features_columns)) if dnn_features_columns else []
    if is_linear:
        for f in sparse_feature_columns:
            embedding_layers_dict[f.name] = Embedding(f.vocabulary_size + 1, 1, name= prefix + '_1d_emb_' +  + f.name)
    else:
        for f in sparse_feature_columns:
            embedding_layers_dict[f.name] = Embedding(f.vocabulary_size + 1, f.embedding_dim, name=prefix + '_kd_emb_' +  f.name)
    return embedding_layers_dict

5.3 GML

def build_gml_layers(gml_user_embedding, gml_movie_embedding):
    return Multiply()([gml_user_embedding, gml_movie_embedding])

5.4 MLP

def build_mlp_layers(mlp_input, units=(32, 16)):
    for out_dim in units:
        mlp_input = Dense(out_dim)(mlp_input)
    return mlp_input

5.5 输出层

def bulid_output_layers(concat_output):
    return Dense(1)(concat_output)

5.6 构建模型

def NCF(dnn_features_columns):
    # 1. 获取字典输入层,键为列名,值为对应的Input
    _, sparse_input_dict = build_input_layers(dnn_features_columns)
    # 2. 获取真实输入层,使用列表存储每个列的Input
    input_layers = list(sparse_input_dict.values())
    # 3. 将SparseFeature进行Embedding,有两路,分别是GML和MLP
    embedding_gml_dict = build_embedding_layers(dnn_features_columns, sparse_input_dict, prefix="GML", is_linear=False)
    embedding_mlp_dict = build_embedding_layers(dnn_features_columns, sparse_input_dict, prefix="MLP", is_linear=False)
    # 4. 将Embedding后的特征进行展开,因为Embedding后为(?,1,8)
    gml_user_embedding = Flatten()(embedding_gml_dict['user_id'](sparse_input_dict['user_id']))
    gml_movie_embedding = Flatten()(embedding_gml_dict['movie_id'](sparse_input_dict['movie_id']))
    mlp_user_embedding = Flatten()(embedding_mlp_dict['user_id'](sparse_input_dict['user_id']))
    mlp_movie_embedding = Flatten()(embedding_mlp_dict['movie_id'](sparse_input_dict['movie_id']))
    # 5. 进行GML,就是展开后的特征进行内积
    gml_output = build_gml_layers(gml_user_embedding, gml_movie_embedding)
#     gml_output = tf.multiply(gml_movie_embedding, gml_user_embedding)
#     gml_output = Multiply()([gml_user_embedding, gml_movie_embedding])
    # 6. 进行MLP,将特征进行连接,传入MLP层
    mlp_input = Concatenate(axis=1)([mlp_user_embedding, mlp_movie_embedding])
    mlp_output = build_mlp_layers(mlp_input, (32, 16))
    # 7. 将GML和MLP层的输出进行连接
    concat_output = Concatenate(axis=1)([gml_output, mlp_output])
    # 8.传入到输出层中,获取评分
    output_layers = bulid_output_layers(concat_output)
    # 构建模型
    model = Model(input_layers, output_layers)
    return model

六、运转模型

history = NCF(dnn_features_columns)
# 编译模型
history.compile(optimizer="adam", 
                loss="mse", 
                metrics=['mae'])
# 训练数据做成字典,与输入层做对应
train_model_input = {name: train_data[name] for name in ['user_id', 'movie_id']}
history.fit(train_model_input, 
            train_data['label'].values,
            batch_size=128, 
            epochs=2, 
            validation_split=0.2)

# 绘制网络结构图
plot_model(history,show_shapes=True)


目录
打赏
0
0
0
0
21
分享
相关文章
猫狗宠物识别系统Python+TensorFlow+人工智能+深度学习+卷积网络算法
宠物识别系统使用Python和TensorFlow搭建卷积神经网络,基于37种常见猫狗数据集训练高精度模型,并保存为h5格式。通过Django框架搭建Web平台,用户上传宠物图片即可识别其名称,提供便捷的宠物识别服务。
689 55
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
297 0
RT-DETR改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
推荐系统网络序言
推荐系统的基本架构包括用户画像、召回、粗排、精排与混排五个模块。用户画像构建兴趣,召回筛选候选集,粗排和精排排序商品,混排处理多内容展示。精排阶段是学术界和工业界的重点,目标是筛选用户可能最喜欢的item列表,主要采用CTR预估模型进行排序。CTR模型从LR进化到embedding+MLP范式,探索高效高阶交叉信息。推荐系统是一个系统工程,需考虑在线与离线一致性,特征和模型的在离线不一致会带来问题。CTR模型输入为大量成对(features、label)数据,特征包含用户本身、行为、上下文和物品特征,离散型特征可采用one-hot或embedding方式处理,连续型特征可分段离散化。
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
234 61
RT-DETR改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
害虫识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了12种常见的害虫种类数据集【"蚂蚁(ants)", "蜜蜂(bees)", "甲虫(beetle)", "毛虫(catterpillar)", "蚯蚓(earthworms)", "蜚蠊(earwig)", "蚱蜢(grasshopper)", "飞蛾(moth)", "鼻涕虫(slug)", "蜗牛(snail)", "黄蜂(wasp)", "象鼻虫(weevil)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Djan
278 1
基于Python深度学习的【害虫识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
蘑菇识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了9种常见的蘑菇种类数据集【"香菇(Agaricus)", "毒鹅膏菌(Amanita)", "牛肝菌(Boletus)", "网状菌(Cortinarius)", "毒镰孢(Entoloma)", "湿孢菌(Hygrocybe)", "乳菇(Lactarius)", "红菇(Russula)", "松茸(Suillus)"】 再使用通过搭建的算法模型对数据集进行训练得到一个识别精度较高的模型,然后保存为为本地h5格式文件。最后使用Django框架搭建了一个Web网页平台可视化操作界面,
308 11
基于Python深度学习的【蘑菇识别】系统~卷积神经网络+TensorFlow+图像识别+人工智能
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
222 14
YOLOv11改进策略【模型轻量化】| 替换骨干网络为EfficientNet v1 高效的移动倒置瓶颈结构
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
YOLOv11改进策略【模型轻量化】| 替换骨干网络为 GhostNet V1 基于 Ghost Module 和 Ghost Bottlenecks的轻量化网络结构
412 13
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
宠物识别系统,本系统使用Python作为主要开发语言,基于TensorFlow搭建卷积神经网络算法,并收集了37种常见的猫狗宠物种类数据集【'阿比西尼亚猫(Abyssinian)', '孟加拉猫(Bengal)', '暹罗猫(Birman)', '孟买猫(Bombay)', '英国短毛猫(British Shorthair)', '埃及猫(Egyptian Mau)', '缅因猫(Maine Coon)', '波斯猫(Persian)', '布偶猫(Ragdoll)', '俄罗斯蓝猫(Russian Blue)', '暹罗猫(Siamese)', '斯芬克斯猫(Sphynx)', '美国斗牛犬
397 29
【宠物识别系统】Python+卷积神经网络算法+深度学习+人工智能+TensorFlow+图像识别
Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧
本文介绍了Python在深度学习领域的应用,重点讲解了神经网络的基础概念、基本结构、训练过程及优化技巧,并通过TensorFlow和PyTorch等库展示了实现神经网络的具体示例,涵盖图像识别、语音识别等多个应用场景。
273 8

热门文章

最新文章

AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问