AI Earth地球科学云平台-系列课程上线啦!

简介: 为加强用户对AI Earth的理解,促进双方交流,提升AI Earth在地球科学领域的服务支撑能力,达摩院多位专家带来AI Earth地球科学云平台线上系列培训,干货满满,诚邀参与!

一、课程安排

1、AIEarth地球科学云平台概况

640.png

2、技术分享

640 (1).png

3、技术分享

640 (2).png

4、AIEarth使用案例分享

640 (3).png

 

二、课程内容

1、培训课程-AI Earth地球科学云平台概况(1),点此进入查看

2、培训课程-AI Earth地球科学云平台概况(2),点此进入查看

3、培训课程-AIE技术分享之云计算与遥感分析的技术方案,点此进入查看

4、培训课程-AIE技术分享之CGIS的引擎方案,点此进入查看

5、培训课程-AIE技术分享之算法模型原理,点此进入查看

6、培训课程-AIE技术分享之遥感AI模型自学习训练实践,点此进入查看

7、培训课程-AIE技术分享之遥感自学习技术研究,点此进入查看

8、培训课程-技术分享之遥感AI模型推理中的科学计算,点此进入查看

9、培训课程-AI Earth使用案例介绍(1),点此进入查看

10、培训课程-AI Earth使用案例介绍(2),点此进入查看


相关文章
|
6月前
|
人工智能 弹性计算 大数据
和五所高校一起,我们共同打造了一门 AI 课程!
阿里云、超星尔雅协同北京大学、南京大学、复旦大学、上海交通大学、浙江大学五所高校名师,共同推出的 AI 通识公益系列课程「动手学 AI:人工智能通识与实践」将于 9月 1 日面向全国所有高校、所有专业的师生正式开放。
557 5
|
10月前
|
人工智能 数据可视化 数据挖掘
AI竟能独立完成顶会论文!The AI Scientist-v2:开源端到端AI自主科研系统,自动探索科学假设生成论文
The AI Scientist-v2 是由 Sakana AI 等机构开发的端到端自主科研系统,通过树搜索算法与视觉语言模型反馈实现科学假设生成、实验执行及论文撰写全流程自动化,其生成论文已通过国际顶会同行评审。
730 34
AI竟能独立完成顶会论文!The AI Scientist-v2:开源端到端AI自主科研系统,自动探索科学假设生成论文
|
5月前
|
存储 人工智能 达摩院
|
7月前
|
人工智能 文字识别 供应链
高校实验实训课程开发:基于现有的硬件基础和开源能力研发最前沿的AI实验课程
更多基于学校现有硬件基础:企业需求场景的开发和发展,更加注重上层数据和应用,各类工具软件的出现,极大提升了各类硬件的应用价值。我们看到各类硬件厂商,想方设法把硬件卖给学校,但是很多硬件不是在那里尘封,就是寥寥无几的使用场景,我们希望基于学校现有的硬件基础去开发更多面向不同行业或专业的实验实训课程,物尽其用。基于学校现有的硬件,集约开发,极大降低硬件投入成本。
314 7
|
7月前
|
机器学习/深度学习 人工智能 自然语言处理
AI 加速科学发现丨Al For Science 专场直播
AI 科学家时代正加速到来,但科研智能体真的做好准备了吗?真实科研场景中,多模态智能体能否在推理、规划与执行等关键能力上达到人类科研人员的水平?我们又该如何准确评估它们的科学认知能力和数据分析表现?
175 0
|
机器学习/深度学习 存储 人工智能
AI与量子计算:推动计算科学的边界
【10月更文挑战第7天】AI与量子计算的融合,标志着计算科学进入了一个全新的时代。在这个时代里,计算能力的边界被不断拓宽,科技创新的速度不断加快。我们有理由相信,在未来的日子里,AI与量子计算将继续携手并进,共同推动计算科学向着更加智能、更加高效的方向发展。让我们期待这一天的到来,共同见证计算科学的无限可能。
|
人工智能 自然语言处理 测试技术
用图灵测试检验AI尤其是大语言模型,真的科学吗?
【9月更文挑战第25天】《Does GPT-4 Pass the Turing Test?》一文评估了先进AI模型GPT-4的图灵测试表现。尽管GPT-4在某些对话中成功迷惑了参与者,但其整体成功率仅为41%,低于人类的63%。图灵测试作为评估AI语言能力的工具依然有效,但存在局限性,如无法评估AI的认知机制且受主观判断影响。此外,测试还引发了关于AI智能及伦理的讨论。
856 6
|
机器学习/深度学习 人工智能 数据可视化
首个全自动科学发现AI系统,Transformer作者创业公司Sakana AI推出AI Scientist
【9月更文挑战第11天】Sakana AI公司近日推出全球首个全自动科学发现AI系统——AI Scientist,实现了人工智能在科学研究领域的重大突破。AI Scientist不仅能独立完成从假设提出到实验设计、数据分析及论文撰写的全过程,还能通过模拟评审提升研究成果的质量。该系统已成功应用于机器学习的多个子领域,并产出达到顶级会议标准的论文。尽管其高效性备受赞誉,但也引发了关于研究可信度和潜在风险的讨论。Sakana AI强调,系统具备可追溯的决策过程与严格的评审机制,确保了研究的可靠性和透明度。论文详情参见:[链接]。
309 6
|
10月前
|
机器学习/深度学习 人工智能 自动驾驶
企业内训|模拟AI场景课程——某汽车厂商
4月18日和19日,东北某市,TsingtaoAI团队为某汽车厂商的智能驾驶业务和研发团队交付“模拟AI场景课程”。本课程基于该厂商在AI领域的战略布局,结合汽车行业智能化转型趋势,以“场景化、实战化、前瞻性”为核心,聚焦AI技术从理论到落地的全链路。通过模拟真实业务场景(如智能座舱优化、智能制造、自动驾驶仿真),帮助学员掌握AI基础能力,并快速应用于研发、生产、营销等环节。
410 4
|
10月前
|
机器学习/深度学习 人工智能 自然语言处理
ai人工智能课程学什么
本内容全面介绍了AI课程的核心体系,涵盖基础理论、核心算法、应用领域及伦理责任等方面。从数学基础与编程技能到机器学习和深度学习算法,再到自然语言处理与计算机视觉等应用领域,系统阐述了AI技术的全貌。同时探讨了开发框架如TensorFlow和PyTorch的使用,并关注AI伦理与社会责任。通过分步验证与实践经验,帮助学习者规避AI局限性。展望未来,生成式人工智能等新兴技术将持续推动课程发展,助力职业成长与社会进步。

热门文章

最新文章