Kafka +深度学习+ MQTT搭建可扩展的物联网平台【附源码】

简介: Kafka +深度学习+ MQTT搭建可扩展的物联网平台【附源码】

物联网+大数据+机器学习将会是以后的趋势,这里介绍一篇这方面的文章包含源码。


混合机器学习基础架构构建了一个场景,利用Apache Kafka作为可扩展的中枢神经系统。 公共云用于极大规模地训练分析模型(例如,通过Google ML Engine在Google Cloud Platform(GCP)上使用TensorFlow和TPU,预测(即模型推断)在本地Kafka基础设施的执行( 例如,利用Kafka Streams或KSQL进行流分析)。


本文重点介绍内部部署。 创建了一个带有KSQL UDF的Github项目,用于传感器分析。 它利用KSQL的新API功能,使用Java轻松构建UDF / UDAF函数,对传入事件进行连续流处理。



使用案例:Connected Cars - 使用深度学习的实时流分析



从连接设备(本例中的汽车传感器)连续处理数百万个事件:

519bae28f15d00e8c5e9e157e2af30d9.jpg为此构建了不同的分析模型。 他们在公共云上接受TensorFlow,H2O和Google ML Engine的训练。 模型创建不是此示例的重点。 最终模型已经可以投入生产,可以部署用于实时预测。


模型服务可以通过模型server 完成,也可以本地嵌入到流处理应用程序中。 参阅RPC与流处理的权衡,以获得模型部署和....



演示:使用MQTT,Kafka和KSQL在Edge进行模型推理



Github项目:深度学习+KSQL UDF 用于流式异常检测MQTT物联网传感器数据

(下载源码:3aa46c2372700ac963550e9d06bb7c3a.jpgksql-udf-deep-learning-mqtt-iot-master.zip (474.64 KB, 下载次数: 0)

该项目的重点是通过MQTT将数据提取到Kafka并通过KSQL处理数据:

713af52f209a9541fb90a639c6b7b933.jpg

Confluent MQTT Proxy的一大优势是无需MQTT Broker即可实现物联网方案的简单性。 可以通过MQTT代理将消息直接从MQTT设备转发到Kafka。 这显着降低了工作量和成本。 如果你“只是”想要在Kafka和MQTT设备之间进行通信,这是一个完美的解决方案。


如果你想看到另一部分(与Elasticsearch / Grafana等接收器应用程序集成),请查看Github项目“KSQL for streaming IoT data”。 这实现了通过Kafka Connect和Elastic连接器与ElasticSearch和Grafana的集成。(源码下载:链接: https://pan.baidu.com/s/1FCFgAoF9v1ihp9fyqHeKag 密码: 67sz)


KSQL UDF - 源代码



开发UDF非常容易。 只需在UDF类中的一个Java方法中实现该函数:

 

@Udf(description = "apply analytic model to sensor input")             public String anomaly(String sensorinput){ "YOUR LOGIC" }

       
这里是所有代码:

package com.github.megachucky.kafka.streams.machinelearning;
import java.util.Arrays;
import hex.genmodel.GenModel;
import hex.genmodel.easy.EasyPredictModelWrapper;
import hex.genmodel.easy.RowData;
import hex.genmodel.easy.exception.PredictException;
import hex.genmodel.easy.prediction.AutoEncoderModelPrediction;
import io.confluent.ksql.function.udf.Udf;
import io.confluent.ksql.function.udf.UdfDescription;
@UdfDescription(name = "anomaly", description = "anomaly detection using deep learning")
public class Anomaly {
    // Model built with H2O R API:
      // anomaly_model <- h2o.deeplearning(x = names(train_ecg),training_frame =
      // train_ecg,activation = "Tanh",autoencoder = TRUE,hidden =
      // c(50,20,50),sparse = TRUE,l1 = 1e-4,epochs = 100)
      // Name of the generated H2O model
      private static String modelClassName = "io.confluent.ksql.function.udf.ml"
                                             + ".DeepLearning_model_R_1509973865970_1"; 
  @Udf(description = "apply analytic model to sensor input")
  public String anomaly(String sensorinput) {
      System.out.println("Kai: DL-UDF starting");
      GenModel rawModel;
        try {
            rawModel = (hex.genmodel.GenModel) Class.forName(modelClassName).newInstance();
        EasyPredictModelWrapper model = new EasyPredictModelWrapper(rawModel);
        // Prepare input sensor data to be in correct data format for the autoencoder model (double[]):
        String[] inputStringArray = sensorinput.split("#");
        double[] doubleValues = Arrays.stream(inputStringArray)
                .mapToDouble(Double::parseDouble)
                .toArray();
        RowData row = new RowData();
        int j = 0;
        for (String colName : rawModel.getNames()) {
          row.put(colName, doubleValues[j]);
          j++;
        }
        AutoEncoderModelPrediction p = model.predictAutoEncoder(row);
        // System.out.println("original: " + java.util.Arrays.toString(p.original));
        // System.out.println("reconstructedrowData: " + p.reconstructedRowData);
        // System.out.println("reconstructed: " + java.util.Arrays.toString(p.reconstructed));
        double sum = 0;
        for (int i = 0; i < p.original.length; i++) {
          sum += (p.original[i] - p.reconstructed[i]) * (p.original[i] - p.reconstructed[i]);
        }
        // Calculate Mean Square Error => High reconstruction error means anomaly
        double mse = sum / p.original.length;
        System.out.println("MSE: " + mse);
        String mseString = "" + mse;
        return (mseString);
        } catch (InstantiationException | IllegalAccessException | ClassNotFoundException e) {
            System.out.println(e.toString());
        } catch (PredictException e) {
            System.out.println(e.toString());
        }
        return null;
  }
}


如何使用Apache Kafka和MQTT Proxy运行演示?



执行演示的所有步骤都在Github项目中描述。

你只需安装Confluent Platform,然后按照以下步骤部署UDF,创建MQTT事件并通过KSQL levera处理它们....

这里使用Mosquitto生成MQTT消息。 当然,也可以使用任何其他MQTT客户端。 这是开放和标准化协议的巨大好处。


目录
相关文章
|
17天前
|
监控 网络协议 物联网
你知道什么是物联网MQTT么?
你知道什么是物联网MQTT么?
26 0
|
1月前
|
消息中间件 数据可视化 Go
Rabbitmq 搭建使用案例 [附源码]
Rabbitmq 搭建使用案例 [附源码]
29 0
|
19天前
|
消息中间件 Java Kafka
你了解RabbitMQ、RocketMQ 和 Kafka吗?
【6月更文挑战第26天】比较了RabbitMQ、RocketMQ和Kafka三种消息队列:RabbitMQ灵活,支持多种协议,适合中小型应用;RocketMQ高性能,适用于大规模消息处理;Kafka则以高吞吐量和流处理见长。RabbitMQ和Kafka生态丰富,而RocketMQ运维相对复杂。选择时考虑性能、灵活性、生态系统和易用性,以及特定场景如大数据流处理或分布式系统组件通信。
18 1
|
26天前
|
消息中间件 Java Kafka
SpringBoot实用开发篇第六章(整合第三方技术,ActiveMQ,RabbitMQ,RocketMQ,Kafka)
SpringBoot实用开发篇第六章(整合第三方技术,ActiveMQ,RabbitMQ,RocketMQ,Kafka)
|
1月前
|
机器学习/深度学习 传感器 算法
基于Mediapipe深度学习算法的手势识别系统【含python源码+PyqtUI界面+原理详解】-python手势识别 深度学习实战项目
基于Mediapipe深度学习算法的手势识别系统【含python源码+PyqtUI界面+原理详解】-python手势识别 深度学习实战项目
|
1月前
|
机器学习/深度学习 存储 计算机视觉
基于YOLOv8深度学习的PCB板缺陷检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测
基于YOLOv8深度学习的PCB板缺陷检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测
|
1月前
|
机器学习/深度学习 存储 安全
基于YOLOv8深度学习的行人跌倒检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测
基于YOLOv8深度学习的行人跌倒检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测
|
12天前
|
消息中间件 NoSQL Kafka
消息中间件(RocketMQ、RabbitMQ、ActiveMQ、Redis、kafka、ZeroMQ)以及之间的区别
消息中间件(RocketMQ、RabbitMQ、ActiveMQ、Redis、kafka、ZeroMQ)以及之间的区别
|
19天前
|
消息中间件 存储 运维
RocketMQ与Kafka深度对比:特性与适用场景解析
RocketMQ与Kafka深度对比:特性与适用场景解析
|
19天前
|
消息中间件 存储 SQL
RocketMQ与Kafka架构深度对比
RocketMQ与Kafka架构深度对比

热门文章

最新文章

相关产品

  • 物联网平台