找对象的过程中,我竟然理解了什么是机器学习!

简介:

什么是人工智能?

我看过很多博客解释什么是人工智能,我觉得还不如一句话一张图解释的简洁明了。让机器实现原来只有人类才能完成的任务,这个操作就是人工智能。

下图所示就是让机器模拟人各种能力的人工智能领域示意图:(图片我是在逛知乎的时候发现的,地址贴在文末)

什么是机器学习?

在解释什么是机器学习之前,我们先来举一个让每个程序员都头疼的问题:

找对象

作为一个程序员,找对象自然是个非常紧迫的问题,那找对象总要有个要求吧 🤔

啥?活的?能动?骨骼轻奇的我怎么可能只有这两点要求啊 🙊 显然我是希望找一个好的女朋友啊(毕竟要带出去撑场面的啊),所以应该怎么找呢?

爱美之心,人皆有之。长得好看的妹子肯定比长得丑的妹子更优秀啊,所以这时我就有了一个简单的规则了:只挑选长得好看的女生的当女朋友。所以还等什么?快去朋友圈看看哪些漂亮的女生还是单身啊。是不是 So easy?

当!然!不!是!

生活总是充满了艰辛

张无忌的麻麻说过:

当你网恋奔现的时候你会发现,那些朋友圈里的都是照骗,你懵逼了。。。很显然,只看女生照片找对象这个方法是很片面的,找到一个好的女朋友的因素有很多而并不只是根据女生的颜值。

在经过了大量思考(并且参考了众多好友的女朋友)之后,你又得出了一个结论:身材好同时颜值高的女生更容易吸引你。同时身材一般但颜值高的好友中只有一半左右能让你感兴趣。

这时你再带着你得出的结论去找女生的时候,才知道原来妹子已经脱单好久,只是把你当朋友。。。但是心好的妹子为了安慰你便把她的闺蜜推给了你。然后你发现你之前的结论不适用了,所以只能重新开始约朋友圈的妹子。

假设过了好久好久之后,你成功的总结了一个找妹子的经验,找到了一个优秀的另你满意的妹子了,你很开心的和她在一起了。丑媳妇也要见公婆的,终于到了你把女朋友带回家给家长见面的时候了,你爸妈说,这女生太漂亮了,你管不住,坚决反对。

在你爸妈的反对下,你只能选择无奈的和妹子 say goodbye👋。最后的最后你和你爸妈摊牌,然后将你的择偶规则告诉你的家人,在他们的筛选下,你终于找到了符合“所有”预期标准属性的女朋友了。

是不是觉得很 dan 疼?

回想一下上述的场景,是不是觉得十分 dan 疼,虽然最终结果是你找到了一个满意的女朋友,但是在找对象的过程中,你需要不断的更换标准(属性),而且每当你需要用一个新的标准(属性)去衡量一个妹子的时候,你只能手动更改你自己的规则。并且你需要了解所有繁杂的影响女朋友质量的因素(比如颜值、身材、贴心程度、可爱程度等等)。如果这些因素足够复杂,你很难手动分类所有类型的女生而做出精确的规则。

并且,不断的和不同的女生谈恋爱、试错不仅浪费时间,名声也不好。说不定还会被扣上一定渣男的帽子。

来类比下?

其实上述就是一个非常不典型的机器学习的例子,我们来类比下:

机器学习(ML)

你可以从朋友圈随机挑选一些女生(假设你的异性缘足够的好)作为样本(training data),然后列出所有女生的属性,比如身高、颜值、身材、学历、工作,等等(features),以及是否贴心、黏人度、孝心,等等(output variables)。将这些抽象化的数据在机器学习算法里运行(classification/regression),则 ML 算法构建一个模型:女生的属性——女生的质量。

然后等到下次你又遇见了一个女生了,你就可以用眼睛扫一下检查女生的属性(身材、颜值等)了(test data),然后提供给 ML 算法,他就会根据之前生成的模型(model)预测这个妹子最终和你走到一起的可能有多大。

其实在机器学习构建模型过程中,内部使用的规则也许和上述例子中类似,但是也有可能是更复杂的规则,不过这些你并不需要关心。

你现在再去找对象就有很大信心了,而且更重要的时候,随着时间你的 ML 算法会自我提升(reinforcement learning),当预测错误的时候(恋爱谈不下去就分手)矫正自身,随着读取更多的 training data 预测也会越来越精准。但是,最流弊的一点在于,你可以利用相同的算法而训练出不同的模型(model),找女朋友可以用这个模型,那找秘书呢?(仿佛发现了什么不得了的事情 🤓,随便你想要训练出什么模型只要你高兴就好 )

所以说对机器学习的最简单的理解,便是:

使用某种算法来对已有数据进行解析、学习,然后对真实世界中的数据/事件作出决策/预测。

那深度学习又是啥?

深度学习,是实现机器学习的技术。对机器学习来说,特征提取并不简单。特征工程往往需要大量的时间去优化,而此时,深度学习便可以自动学习特征和任务之间的关联,还能从简单特征中提取复杂的特征。

深度学习是机器学习的许多方法之一,其他方法包括决策树学习、归纳逻辑程序设计、聚类、强化学习和贝叶斯网络等。

那深度学习是如何寻找那些复杂特征的呢?

他是通过建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,如图象、声音、文本。其产生的灵感来自于大脑的结构和功能,即许多神经元的互联。

下图是我在知乎上看见的一个非常有趣的回答:

推荐大家去阅读下这个回答:👇

人工智能、机器学习和深度学习的区别? - 图普科技的回答 - 知乎https://www.zhihu.com/question/57770020/answer/418117913

那他们三个有什么关系呢?

人工智能是为机器赋予人的智慧,而机器学习是实现人工智能的手段之一,而深度学习则是机器学习的分支,所以三者之间的关系就如上图所示。

教你一招快速分辨 AI 和 ML

最后再教你一招如何快速分辨 AI 和 ML:

参考

相关文章
|
6月前
|
机器学习/深度学习 数据采集 存储
【机器学习】机器学习流程之收集数据
【机器学习】机器学习流程之收集数据
218 1
|
18天前
|
机器学习/深度学习 数据采集 人工智能
浅谈机器学习,聊聊训练过程,就酱!
本故事讲的是关于机器学习的基本概念和训练过程。通过这个故事,你将对机器学习有一个直观的了解。随后,当你翻阅关于机器学习的书籍时,也许会有不同的感受。如果你有感觉到任督二脉被打通了,那我真是太高兴了。如果没有,我再努努力 ヘ(・_|
35 0
浅谈机器学习,聊聊训练过程,就酱!
|
3月前
|
机器学习/深度学习 人工智能 自然语言处理
【机器学习】机器学习的详细阐述
机器学习(Machine Learning, ML)是一种通过从数据中学习来自适应改进预测和决策的人工智能技术。以下是对机器学习的详细阐述
31 2
|
4月前
|
机器学习/深度学习 数据可视化 TensorFlow
探索机器学习模型的可视化:从理论到实践
【7月更文挑战第31天】本文将深入探讨如何通过可视化技术来理解和解释复杂的机器学习模型。我们将介绍多种可视化工具和方法,并通过实际代码示例展示如何应用这些技术来揭示模型的内部工作原理。文章旨在为读者提供一种直观的方式来理解、调试和优化他们的机器学习模型。
43 0
|
6月前
|
机器学习/深度学习 数据采集 算法
机器学习的原理与应用
机器学习的原理与应用
|
6月前
|
机器学习/深度学习 数据采集 算法
机器学习(六)构建机器学习模型
机器学习(六)构建机器学习模型
89 0
|
机器学习/深度学习 算法 C++
[笔记]机器学习之机器学习模型及案例分析《一》回归(二)
[笔记]机器学习之机器学习模型及案例分析《一》回归(二)
160 0
|
机器学习/深度学习 Python
[笔记]机器学习之机器学习模型及案例分析《一》回归(一)
[笔记]机器学习之机器学习模型及案例分析《一》回归
|
机器学习/深度学习 算法 Python
机器学习的基本代码
机器学习的基本代码
|
机器学习/深度学习 数据可视化 算法
机器学习系列3 机器学习的流程
构建、使用和维护机器学习模型及其所使用的数据的过程与其他开发工作流的过程截然不同。在本文中,我将揭开机器学习的面纱,讲述机器学习的流程及部分技术。
224 0