改进的粒子滤波算法及其应用研究(Matlab代码实现)

简介: 改进的粒子滤波算法及其应用研究(Matlab代码实现)

 👨‍🎓个人主页:研学社的博客

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🌈3 Matlab代码实现

🎉4 参考文献


image.gif编辑

💥1 概述

滤波分为线性滤波与非线性滤波,在信号处理、目标定位、海上目标探测、图像处理、无人机位姿解算[58l等领域发挥着重要的作用。文献[9]表明了线性高斯模型的最优滤波算法是卡尔曼滤波(Kalman Filter,KF),非线性模型的最优滤波算法是粒子滤波。由于人们生活的世界是非线性的,对抽象化得到的非线性模型进行处理,非线性滤波算法发挥了重要作用。滤波算法的发展由易入难,由线性发展到非线性,因此在进行非线性滤波算法的相关研究时,线性滤波算法的发展也需要进行一定的探讨。

1960年卡尔曼提出了经典的卡尔曼滤波,由于卡尔曼滤波实时性强,不需要存住堵大量的状态信息一经提出便得到了广泛的应用。但卡尔曼滤波算法基于高斯模型的假设,为了解决非线性滤波问题,人们相继提出了扩展卡尔曼滤波(Extended KF, EKF)与无过亦卡尔曼滤波(Unscented KF,UKF)算法。但EKF与UKF均要求状态模型满足高斯分布。上改世纪60年代,粒子滤波(Particle Filter, PF)算法被提出。粒子滤波不需要对系统模型斯假设,因此理论上比卡尔曼滤波应用更为广泛。但粒子滤波算法提出初期存在着粒拉子退化的问题,状态估计的精度受限没有得到广泛的应用"1。1993年Gordanl2提出了重采样算法,粒子滤波的相关研究迅速得到了发展。近年来,现代电子计算机技术飞速发展,粒子滤波算法也得到了越来越多的关注。在非线性非高斯动态系统模型中,粒

子滤波已成为主要的估计方法,并得到了广泛的应用。与国外同行相比,国内有关粒子滤波的研究起步较晚,但发展迅速并且取得了许多研究成果。由于目标跟踪与滤波技术应用。

 

状态估计是控制理论中的一个重要的研究点,状态估计指的是从混有噪声的信号中尽可能地恢复系统真实的状态。现代各种滤波技术的发展,使得估计问题发挥着越来越重要的作用,尤其是在信号处理、目标跟踪等领域。以目标跟踪为例进行阐述,目标跟踪需要从大量的量测数据中估计出系统的当前状态,量测噪声是无法完全消除的。估计的目的是从含有噪声的量测值中提取出有用信息,利用这些信息估计出系统的状态,使得估计的状态值与真实状态间误差满足方差最小的原则。根据量测值与估计值时间的顺序关系,可以将估计问题分为平滑、滤波和预测[3]。滤波是本论文研究的主要内容,即根据到目前时刻已有的量测值来估计出系统的状态值。根据系统状态模型的不同,

可以将估计问题分为线性估计与非线性估计。根据噪声类型的不同,可以将估计问题划分为

线性高斯估计、非线性高斯估计、线性非高斯估计和非线性非高斯估计。

 

📚2 运行结果

image.gif

image.gif

image.gif

🌈3 Matlab代码实现

改进的粒子滤波算法及其应用研究(Matlab代码实现)

🎉4 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]陈菘. 改进的粒子滤波算法及其应用研究[D].江西理工大学,2021.DOI:10.27176/d.cnki.gnfyc.2021.000168.

相关文章
|
7天前
|
算法
分享一些提高二叉树遍历算法效率的代码示例
这只是简单的示例代码,实际应用中可能还需要根据具体需求进行更多的优化和处理。你可以根据自己的需求对代码进行修改和扩展。
|
10天前
|
算法 数据挖掘 数据安全/隐私保护
基于FCM模糊聚类算法的图像分割matlab仿真
本项目展示了基于模糊C均值(FCM)算法的图像分割技术。算法运行效果良好,无水印。使用MATLAB 2022a开发,提供完整代码及中文注释,附带操作步骤视频。FCM算法通过隶属度矩阵和聚类中心矩阵实现图像分割,适用于灰度和彩色图像,广泛应用于医学影像、遥感图像等领域。
|
11天前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
12天前
|
存储 算法 决策智能
基于免疫算法的TSP问题求解matlab仿真
旅行商问题(TSP)是一个经典的组合优化问题,目标是寻找经过每个城市恰好一次并返回起点的最短回路。本文介绍了一种基于免疫算法(IA)的解决方案,该算法模拟生物免疫系统的运作机制,通过克隆选择、变异和免疫记忆等步骤,有效解决了TSP问题。程序使用MATLAB 2022a版本运行,展示了良好的优化效果。
|
11天前
|
机器学习/深度学习 算法 芯片
基于GSP工具箱的NILM算法matlab仿真
基于GSP工具箱的NILM算法Matlab仿真,利用图信号处理技术解析家庭或建筑内各电器的独立功耗。GSPBox通过图的节点、边和权重矩阵表示电气系统,实现对未知数据的有效分类。系统使用MATLAB2022a版本,通过滤波或分解技术从全局能耗信号中提取子设备的功耗信息。
|
11天前
|
机器学习/深度学习 算法 5G
基于MIMO系统的SDR-AltMin混合预编码算法matlab性能仿真
基于MIMO系统的SDR-AltMin混合预编码算法通过结合半定松弛和交替最小化技术,优化大规模MIMO系统的预编码矩阵,提高信号质量。Matlab 2022a仿真结果显示,该算法能有效提升系统性能并降低计算复杂度。核心程序包括预编码和接收矩阵的设计,以及不同信噪比下的性能评估。
30 3
|
19天前
|
算法 测试技术 开发者
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗
在Python开发中,性能优化和代码审查至关重要。性能优化通过改进代码结构和算法提高程序运行速度,减少资源消耗;代码审查通过检查源代码发现潜在问题,提高代码质量和团队协作效率。本文介绍了一些实用的技巧和工具,帮助开发者提升开发效率。
19 3
|
17天前
|
分布式计算 Java 开发工具
阿里云MaxCompute-XGBoost on Spark 极限梯度提升算法的分布式训练与模型持久化oss的实现与代码浅析
本文介绍了XGBoost在MaxCompute+OSS架构下模型持久化遇到的问题及其解决方案。首先简要介绍了XGBoost的特点和应用场景,随后详细描述了客户在将XGBoost on Spark任务从HDFS迁移到OSS时遇到的异常情况。通过分析异常堆栈和源代码,发现使用的`nativeBooster.saveModel`方法不支持OSS路径,而使用`write.overwrite().save`方法则能成功保存模型。最后提供了完整的Scala代码示例、Maven配置和提交命令,帮助用户顺利迁移模型存储路径。
|
22天前
|
人工智能 算法 数据安全/隐私保护
基于遗传优化的SVD水印嵌入提取算法matlab仿真
该算法基于遗传优化的SVD水印嵌入与提取技术,通过遗传算法优化水印嵌入参数,提高水印的鲁棒性和隐蔽性。在MATLAB2022a环境下测试,展示了优化前后的性能对比及不同干扰下的水印提取效果。核心程序实现了SVD分解、遗传算法流程及其参数优化,有效提升了水印技术的应用价值。
|
23天前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于贝叶斯优化CNN-LSTM网络的数据分类识别算法matlab仿真
本项目展示了基于贝叶斯优化(BO)的CNN-LSTM网络在数据分类中的应用。通过MATLAB 2022a实现,优化前后效果对比明显。核心代码附带中文注释和操作视频,涵盖BO、CNN、LSTM理论,特别是BO优化CNN-LSTM网络的batchsize和学习率,显著提升模型性能。