改进的粒子滤波算法及其应用研究(Matlab代码实现)

简介: 改进的粒子滤波算法及其应用研究(Matlab代码实现)

 👨‍🎓个人主页:研学社的博客

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🌈3 Matlab代码实现

🎉4 参考文献


image.gif编辑

💥1 概述

滤波分为线性滤波与非线性滤波,在信号处理、目标定位、海上目标探测、图像处理、无人机位姿解算[58l等领域发挥着重要的作用。文献[9]表明了线性高斯模型的最优滤波算法是卡尔曼滤波(Kalman Filter,KF),非线性模型的最优滤波算法是粒子滤波。由于人们生活的世界是非线性的,对抽象化得到的非线性模型进行处理,非线性滤波算法发挥了重要作用。滤波算法的发展由易入难,由线性发展到非线性,因此在进行非线性滤波算法的相关研究时,线性滤波算法的发展也需要进行一定的探讨。

1960年卡尔曼提出了经典的卡尔曼滤波,由于卡尔曼滤波实时性强,不需要存住堵大量的状态信息一经提出便得到了广泛的应用。但卡尔曼滤波算法基于高斯模型的假设,为了解决非线性滤波问题,人们相继提出了扩展卡尔曼滤波(Extended KF, EKF)与无过亦卡尔曼滤波(Unscented KF,UKF)算法。但EKF与UKF均要求状态模型满足高斯分布。上改世纪60年代,粒子滤波(Particle Filter, PF)算法被提出。粒子滤波不需要对系统模型斯假设,因此理论上比卡尔曼滤波应用更为广泛。但粒子滤波算法提出初期存在着粒拉子退化的问题,状态估计的精度受限没有得到广泛的应用"1。1993年Gordanl2提出了重采样算法,粒子滤波的相关研究迅速得到了发展。近年来,现代电子计算机技术飞速发展,粒子滤波算法也得到了越来越多的关注。在非线性非高斯动态系统模型中,粒

子滤波已成为主要的估计方法,并得到了广泛的应用。与国外同行相比,国内有关粒子滤波的研究起步较晚,但发展迅速并且取得了许多研究成果。由于目标跟踪与滤波技术应用。

 

状态估计是控制理论中的一个重要的研究点,状态估计指的是从混有噪声的信号中尽可能地恢复系统真实的状态。现代各种滤波技术的发展,使得估计问题发挥着越来越重要的作用,尤其是在信号处理、目标跟踪等领域。以目标跟踪为例进行阐述,目标跟踪需要从大量的量测数据中估计出系统的当前状态,量测噪声是无法完全消除的。估计的目的是从含有噪声的量测值中提取出有用信息,利用这些信息估计出系统的状态,使得估计的状态值与真实状态间误差满足方差最小的原则。根据量测值与估计值时间的顺序关系,可以将估计问题分为平滑、滤波和预测[3]。滤波是本论文研究的主要内容,即根据到目前时刻已有的量测值来估计出系统的状态值。根据系统状态模型的不同,

可以将估计问题分为线性估计与非线性估计。根据噪声类型的不同,可以将估计问题划分为

线性高斯估计、非线性高斯估计、线性非高斯估计和非线性非高斯估计。

 

📚2 运行结果

image.gif

image.gif

image.gif

🌈3 Matlab代码实现

改进的粒子滤波算法及其应用研究(Matlab代码实现)

🎉4 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]陈菘. 改进的粒子滤波算法及其应用研究[D].江西理工大学,2021.DOI:10.27176/d.cnki.gnfyc.2021.000168.

相关文章
|
13天前
|
存储 监控 算法
员工上网行为监控中的Go语言算法:布隆过滤器的应用
在信息化高速发展的时代,企业上网行为监管至关重要。布隆过滤器作为一种高效、节省空间的概率性数据结构,适用于大规模URL查询与匹配,是实现精准上网行为管理的理想选择。本文探讨了布隆过滤器的原理及其优缺点,并展示了如何使用Go语言实现该算法,以提升企业网络管理效率和安全性。尽管存在误报等局限性,但合理配置下,布隆过滤器为企业提供了经济有效的解决方案。
54 8
员工上网行为监控中的Go语言算法:布隆过滤器的应用
|
13天前
|
存储 缓存 算法
探索企业文件管理软件:Python中的哈希表算法应用
企业文件管理软件依赖哈希表实现高效的数据管理和安全保障。哈希表通过键值映射,提供平均O(1)时间复杂度的快速访问,适用于海量文件处理。在Python中,字典类型基于哈希表实现,可用于管理文件元数据、缓存机制、版本控制及快速搜索等功能,极大提升工作效率和数据安全性。
51 0
|
2月前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法与应用
探索人工智能中的强化学习:原理、算法与应用
|
2月前
|
机器学习/深度学习 算法 数据挖掘
C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出
本文探讨了C语言在机器学习中的应用及其重要性。C语言以其高效性、灵活性和可移植性,适合开发高性能的机器学习算法,尤其在底层算法实现、嵌入式系统和高性能计算中表现突出。文章还介绍了C语言在知名机器学习库中的作用,以及与Python等语言结合使用的案例,展望了其未来发展的挑战与机遇。
52 1
|
2月前
|
并行计算 算法 测试技术
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面
C语言因高效灵活被广泛应用于软件开发。本文探讨了优化C语言程序性能的策略,涵盖算法优化、代码结构优化、内存管理优化、编译器优化、数据结构优化、并行计算优化及性能测试与分析七个方面,旨在通过综合策略提升程序性能,满足实际需求。
67 1
|
2月前
|
缓存 算法 网络协议
OSPF的路由计算算法:原理与应用
OSPF的路由计算算法:原理与应用
66 4
|
2月前
|
机器学习/深度学习 监控 算法
基于反光衣和检测算法的应用探索
本文探讨了利用机器学习和计算机视觉技术进行反光衣检测的方法,涵盖图像预处理、目标检测与分类、特征提取等关键技术。通过YOLOv5等模型的训练与优化,展示了实现高效反光衣识别的完整流程,旨在提升智能检测系统的性能,应用于交通安全、工地监控等领域。
|
2月前
|
存储 算法 网络协议
OSPF的SPF算法介绍:原理、实现与应用
OSPF的SPF算法介绍:原理、实现与应用
94 3
|
2月前
|
机器学习/深度学习 JSON 算法
二叉树遍历算法的应用场景有哪些?
【10月更文挑战第29天】二叉树遍历算法作为一种基础而重要的算法,在许多领域都有着不可或缺的应用,它为解决各种复杂的问题提供了有效的手段和思路。随着计算机科学的不断发展,二叉树遍历算法也在不断地被优化和扩展,以适应新的应用场景和需求。
55 0
|
2月前
|
机器学习/深度学习 人工智能 算法
探索人工智能中的强化学习:原理、算法及应用
探索人工智能中的强化学习:原理、算法及应用