基于Windows下Anaconda创建python虚拟环境教程(二)

简介: 基于Windows下Anaconda创建python虚拟环境教程

五(可忽略)、接下来博主在导入创建一个深度学习模型库DeepPurpose的python虚拟环境DeepPurpose并配置的过程,相当于实践一下,只想创建python虚拟环境在第四步就已经成功结束。注意:若用户开启VPN则安装前需要关闭VPN,避免安装不成功。

  • 下载项目代码库到E:/DeepPurpose路径文件下。
git clone https://github.com/kexinhuang12345/DeepPurpose.git E:/DeepPurpose

  • 将路径转到上一步git项目下载到本地的路径,也就是E:/DeepPurpose路径。
E:
cd DeepPurpose

  • 导入E:/DeepPurpose路径下的yml 文件,再根据 yml 文件内容新创建对应虚拟环境(注意:运行下面命令之前必须路径转到yml文件的路径,而且这是新创建一个虚拟环境那么如果是同一台电脑必须删除原同名的虚拟环境或者将原虚拟环境更换名称)。
conda env create -f environment.yml

conda activate DeepPurpose

  • 上步操作只会创建虚拟环境并导入conda命令直接安装的包,但是原虚拟环境大部分pip安装的包需要在新的虚拟环境下pip导入安装通过之前原虚拟环境pip导出的requirements.txt(注意:上步虚拟环境已经创建,若在此步报一些安装错误可以打开requirements.txt文件删除这些报错安装的包,到时候需要再pip单个下载pip之前安装报错的包到此虚拟环境;为保证顺利pip下载,启用https://pypi.douban.com/simple这个镜像可以下载快速顺利,当然不用镜像也可以只不过时间长容易安装超时报错)。
pip install -r requirements.txt -i https://pypi.douban.com/simple

  • 之前创建好的一个python虚拟环境,名称是DeepPurpose(注意:创建python虚拟环境在成功结束后一定要将新创建的虚拟环境的Scripts文件内容添加到环境变量PATH中)。

  • 激活python虚拟环境DeepPurpose。
conda activate DeepPurpose

  • 安装相关python包和库等。
conda install -c conda-forge rdkit

或者

conda install -c rdkit rdkit

conda install -c conda-forge notebook

或者

pip install jupyter notebook

conda install -c conda-forge scikit-learn

或者

pip install scikit-learn

pip install rdkit-pypi

pip install git+https://github.com/bp-kelley/descriptastorus 

或者先通过github链接将项目下载到本地,然后转此项目setup.py文件,然后执行下面的命令:

python setup.py install

pip install DeepPurpose

六、若在python虚拟环境中(博主举例python虚拟环境是rothschildlhl)出现“pip-script.py’ is not present.”类似的错误,原因在于pip更新不成功,原来的pip版本也被破坏。

  • 更新pip命令
pip install --upgrade pip

  • 解决错误,根据下面命令重新安装最新版本pip
conda activate rothschildlhl
python -m ensurepip
python -m pip install --upgrade pip

七、Conda导出导入和更新虚拟环境

  • 激活(切换)到需要导出的虚拟环境(博主举例以之前创建的虚拟环境transformers为例)。
conda activate transformers

  • 将虚拟环境transformers导出保存为yml文件并命名为xrlhl.yml,此操作只会导出conda命令直接安装的包,原虚拟环境大部分pip安装的包需要pip导出安装库到pip.txt,后续再导入到新虚拟环境(注意:默认导出文件到命令行前面的路径,博主举例的是C:\Users\25216,可以见下图)。
conda env export > xrlhl.yml
pip freeze >pip.txt

  • 导入yml 文件,再根据 yml 文件内容新创建对应虚拟环境(注意:运行下面命令之前必须路径转到yml 文件的路径,而且这是新创建那么如果是同一台电脑必须删除原同名的虚拟环境或者将原虚拟环境更换名称)。
conda env create -f xrlhl.yml
conda activate transformers
pip install -r pip.txt

  • 根据 yaml(yml)文件更新已经创建的虚拟环境(注意:博主举例是xrlhl.yml文件更新虚拟环境DeepPurpose)。
conda env update -n DeepPurpose --file xrlhl.yml

相关文章
|
4天前
|
Python
SciPy 教程 之 Scipy 显著性检验 3
本教程介绍Scipy显著性检验,包括其基本概念、原理及应用。显著性检验用于判断样本与总体假设间的差异是否显著,是统计学中的重要工具。Scipy通过`scipy.stats`模块提供了相关功能,支持双边检验等方法。
10 1
|
6天前
|
机器学习/深度学习 Python
SciPy 教程 之 SciPy 插值 2
SciPy插值教程:介绍插值概念及其在数值分析中的应用,特别是在处理数据缺失时的插补和平滑数据集。SciPy的`scipy.interpolate`模块提供了强大的插值功能,如一维插值和样条插值。通过`UnivariateSpline()`函数,可以轻松实现单变量插值,示例代码展示了如何对非线性点进行插值计算。
10 3
|
5天前
|
机器学习/深度学习 数据处理 Python
SciPy 教程 之 SciPy 插值 3
本教程介绍了SciPy中的插值方法,包括什么是插值及其在数据处理和机器学习中的应用。通过 `scipy.interpolate` 模块,特别是 `Rbf()` 函数,展示了如何实现径向基函数插值,以平滑数据集中的离散点。示例代码演示了如何使用 `Rbf()` 函数进行插值计算。
11 0
|
5天前
|
Python
SciPy 教程 之 Scipy 显著性检验 1
本教程介绍Scipy显著性检验,包括统计假设、零假设和备择假设等概念,以及如何使用scipy.stats模块进行显著性检验,以判断样本与总体假设间是否存在显著差异。
9 0
|
6月前
|
数据处理 Python Windows
安装Python与Anaconda
安装Python与Anaconda
73 2
|
机器学习/深度学习 IDE 开发工具
软件类配置(二)【Windows中安装python、pycharm、opencv、anaconda】
软件类配置(二)【Windows中安装python、pycharm、opencv、anaconda】
140 0
|
索引 Python Windows
如何安装Python运行环境Anaconda?(视频教程)
本视频教程针对Windows 7平台,集成3.6版本Python的Anaconda录制。 根据我多次线下编程工作坊获得的反馈经验,发现Python初学者居然在环境安装步骤,就很可能遭受挫折。
1411 0
|
4天前
|
机器学习/深度学习 人工智能 TensorFlow
人工智能浪潮下的自我修养:从Python编程入门到深度学习实践
【10月更文挑战第39天】本文旨在为初学者提供一条清晰的道路,从Python基础语法的掌握到深度学习领域的探索。我们将通过简明扼要的语言和实际代码示例,引导读者逐步构建起对人工智能技术的理解和应用能力。文章不仅涵盖Python编程的基础,还将深入探讨深度学习的核心概念、工具和实战技巧,帮助读者在AI的浪潮中找到自己的位置。
|
4天前
|
机器学习/深度学习 数据挖掘 Python
Python编程入门——从零开始构建你的第一个程序
【10月更文挑战第39天】本文将带你走进Python的世界,通过简单易懂的语言和实际的代码示例,让你快速掌握Python的基础语法。无论你是编程新手还是想学习新语言的老手,这篇文章都能为你提供有价值的信息。我们将从变量、数据类型、控制结构等基本概念入手,逐步过渡到函数、模块等高级特性,最后通过一个综合示例来巩固所学知识。让我们一起开启Python编程之旅吧!
|
4天前
|
存储 Python
Python编程入门:打造你的第一个程序
【10月更文挑战第39天】在数字时代的浪潮中,掌握编程技能如同掌握了一门新时代的语言。本文将引导你步入Python编程的奇妙世界,从零基础出发,一步步构建你的第一个程序。我们将探索编程的基本概念,通过简单示例理解变量、数据类型和控制结构,最终实现一个简单的猜数字游戏。这不仅是一段代码的旅程,更是逻辑思维和问题解决能力的锻炼之旅。准备好了吗?让我们开始吧!