Mysql中的B-Tree和B+Tree原理解析

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
云解析 DNS,旗舰版 1个月
简介: 1、操作系统从磁盘读取数据到内存时是以磁盘块(block)为基本单位的2、InnoDB存储引擎是按页来处理数据的,因此B-Tree/B+Tree的基础分配单位是页。InnoDB存储引擎中默认每个页的大小为16KB。通过以下命令进行茶盘

基本知识

1、操作系统从磁盘读取数据到内存时是以磁盘块(block)为基本单位的
2、InnoDB存储引擎是按页来处理数据的,因此B-Tree/B+Tree的基础分配单位是页。InnoDB存储引擎中默认每个页的大小为16KB。
通过以下命令进行茶盘

mysql> show variables like 'innodb_page_size';

3、磁盘块(block)实际上并没有这么大,因此InnoDB每次申请磁盘空间时都会是若干地址连续磁盘块来达到页的大小16KB。

平衡多路查找树(B-Tree)(所有节点存放data)

b-tree是平衡二叉树的优化,主要是为了排序数据,查找数据,减少磁盘IO。

B-Tree特点

1、每一个节点,包含指针(指向子节点的指针),主键值,data(主键值所在记录的一行数据)

2、一个m阶的b-tree,每个节点最多有m个孩子。例如三阶,每个节点有三个孩子节点

如下图所示为一个3阶的B-Tree:

注意:图中磁盘块,应该为innodb的调度单位 页。使用页,方便理解

在这里插入图片描述

以主键28,展示搜索过程:

1、磁盘IO,读取根节点页(实际上根节点被载入内存,读取内存中的根节点)
2、内存比较,28大于17,小于35,读取对应页
3、磁盘IO,读取p2指针所指向的节点
4、内存比较,28大于26,小于30,读取对应节点
5、磁盘IO,读取对应节点页
6、内存比较,获取28主键值,和对应的记录数据

以上过程三次磁盘IO(实际上应该是两次),三次内存比较。每个节点都包含data(记录数据)

B-tree缺点

  • innodb引擎对于页的处理是 16kb,节点中不仅包含键值,指针,还有占用空间较大的记录data。
  • 而主键大小bigint占8byte,指针占8byte,data大小占用过大,导致一页(节点)实际上存放不了多少键值和指针。
  • 一旦页存放不下,就会加深B-Tree的深度,而我们知道每加深一层,磁盘IO一层,磁盘IO效率低,导致整体性能降低。

B+Tree (叶子节点存放data)

B+Tree是堆B-tree的优化,主要是想每一页(每个节点)多存放键值和指针,减少tree深度,降低磁盘IO,提高查找效率。

B+Tree特点

1、非叶子节点只存储键值信息和指针。

2、所有叶子节点之间都有一个链指针。

3、数据记录都存放在叶子节点中。

假设每页能存储4个键值及指针信息,则变成B+Tree后其结构如下图所示:
在这里插入图片描述

1、InnoDB存储引擎中页的大小为16KB,

2、表的主键类型为BIGINT(占用8个字节),指针类型也一般为4或8个字节,也就是说一个页(B+Tree中的一个节点)中大概存储16KB/(8B+8B)=1K个键值

3、假设data为1kb,一页中最多16kb/1kb=16条记录

3、一个深度为3的B+Tree索引可以维护10^3 10^3 16 = 16,777,216‬ 条记录。大概是17百多万条,仅仅也才三层B+Tree。

相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助     相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
相关文章
|
3天前
|
存储 算法 Java
解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用
在Java中,Set接口以其独特的“无重复”特性脱颖而出。本文通过解析HashSet的工作原理,揭示Set如何利用哈希算法和equals()方法确保元素唯一性,并通过示例代码展示了其“无重复”特性的具体应用。
14 3
|
14天前
|
缓存 算法 关系型数据库
Mysql(3)—数据库相关概念及工作原理
数据库是一个以某种有组织的方式存储的数据集合。它通常包括一个或多个不同的主题领域或用途的数据表。
38 5
Mysql(3)—数据库相关概念及工作原理
|
13天前
|
存储 缓存 关系型数据库
MySQL事务日志-Redo Log工作原理分析
事务的隔离性和原子性分别通过锁和事务日志实现,而持久性则依赖于事务日志中的`Redo Log`。在MySQL中,`Redo Log`确保已提交事务的数据能持久保存,即使系统崩溃也能通过重做日志恢复数据。其工作原理是记录数据在内存中的更改,待事务提交时写入磁盘。此外,`Redo Log`采用简单的物理日志格式和高效的顺序IO,确保快速提交。通过不同的落盘策略,可在性能和安全性之间做出权衡。
1576 12
|
5天前
|
SQL 关系型数据库 MySQL
阿里面试:MYSQL 事务ACID,底层原理是什么? 具体是如何实现的?
尼恩,一位40岁的资深架构师,通过其丰富的经验和深厚的技術功底,为众多读者提供了宝贵的面试指导和技术分享。在他的读者交流群中,许多小伙伴获得了来自一线互联网企业的面试机会,并成功应对了诸如事务ACID特性实现、MVCC等相关面试题。尼恩特别整理了这些常见面试题的系统化解答,形成了《MVCC 学习圣经:一次穿透MYSQL MVCC》PDF文档,旨在帮助大家在面试中展示出扎实的技术功底,提高面试成功率。此外,他还编写了《尼恩Java面试宝典》等资料,涵盖了大量面试题和答案,帮助读者全面提升技术面试的表现。这些资料不仅内容详实,而且持续更新,是求职者备战技术面试的宝贵资源。
阿里面试:MYSQL 事务ACID,底层原理是什么? 具体是如何实现的?
|
6天前
|
Java 关系型数据库 MySQL
【编程基础知识】Eclipse连接MySQL 8.0时的JDK版本和驱动问题全解析
本文详细解析了在使用Eclipse连接MySQL 8.0时常见的JDK版本不兼容、驱动类错误和时区设置问题,并提供了清晰的解决方案。通过正确配置JDK版本、选择合适的驱动类和设置时区,确保Java应用能够顺利连接MySQL 8.0。
41 1
|
6天前
|
架构师 关系型数据库 MySQL
MySQL最左前缀优化原则:深入解析与实战应用
【10月更文挑战第12天】在数据库架构设计与优化中,索引的使用是提升查询性能的关键手段之一。其中,MySQL的最左前缀优化原则(Leftmost Prefix Principle)是复合索引(Composite Index)应用中的核心策略。作为资深架构师,深入理解并掌握这一原则,对于平衡数据库性能与维护成本至关重要。本文将详细解读最左前缀优化原则的功能特点、业务场景、优缺点、底层原理,并通过Java示例展示其实现方式。
16 1
|
12天前
|
开发框架 缓存 前端开发
electron-builder 解析:你了解其背后的构建原理吗?
本文首发于微信公众号“前端徐徐”,详细解析了 electron-builder 的工作原理。electron-builder 是一个专为整合前端项目与 Electron 应用的打包工具,负责管理依赖、生成配置文件及多平台构建。文章介绍了前端项目的构建流程、配置信息收集、依赖处理、asar 打包、附加资源准备、Electron 打包、代码签名、资源压缩、卸载程序生成、安装程序生成及最终安装包输出等环节。通过剖析 electron-builder 的原理,帮助开发者更好地理解和掌握跨端桌面应用的构建流程。
35 2
|
5天前
|
前端开发 JavaScript UED
axios取消请求CancelToken的原理解析及用法示例
axios取消请求CancelToken的原理解析及用法示例
13 0
|
8天前
|
存储 缓存 数据处理
深度解析:Hologres分布式存储引擎设计原理及其优化策略
【10月更文挑战第9天】在大数据时代,数据的规模和复杂性不断增加,这对数据库系统提出了更高的要求。传统的单机数据库难以应对海量数据处理的需求,而分布式数据库通过水平扩展提供了更好的解决方案。阿里云推出的Hologres是一个实时交互式分析服务,它结合了OLAP(在线分析处理)与OLTP(在线事务处理)的优势,能够在大规模数据集上提供低延迟的数据查询能力。本文将深入探讨Hologres分布式存储引擎的设计原理,并介绍一些关键的优化策略。
37 0
|
13天前
|
SQL 分布式计算 大数据
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(一)
大数据-97 Spark 集群 SparkSQL 原理详细解析 Broadcast Shuffle SQL解析过程(一)
29 0

推荐镜像

更多