基于MATLAB中雷达和视觉合成数据的目标级传感器融合(Matlab代码实现)

简介: 基于MATLAB中雷达和视觉合成数据的目标级传感器融合(Matlab代码实现)

👨‍🎓个人主页:研学社的博客

💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

💥1 概述

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


image.gif

💥1 概述

本文使用MATLAB的场景生成器工具箱,通过合成雷达和视觉观察创建一个简单的高速公路驾驶场景。扩展卡尔曼滤波器已被实现以将车辆的状态传播到未来。将投影状态值与当前测量值进行比较以执行跟踪。

📚2 运行结果

image.gif

image.gifimage.gif

image.gifimage.gif

部分代码:

clear all
close all
clc

%% Parameters

% Assignment gate value
AssignmentThreshold = 30;        % The higher the Gate value, the higher the likelihood that every track...
                                % will be assigned a detection.

% M/N initiation parameters
% The track is "confirmed" if after N consecutive updates at
% least M measurements are assigned to the track after the track initiation.
N = 5;
M = 4;

% Elimination threshold: The track will be deleted after EliminationTH # of updates without
% any measurement update
EliminationTH = 10; % updates

% Measurement Noise
R = [22.1 0 0 0
    0 2209 0 0
    0 0 22.1 0
    0 0 0 2209];

% Process noise
Q= 7e-1.*eye(4);

% Performance anlysis parameters:
XScene = 80;
YScene = 40;
% PerfRadius is defined after scenario generation

%% Generate the Scenario

% Define an empty scenario.
scenario = drivingScenario;
scenario.SampleTime = 0.01;  % seconds
SensorsSampleRate   = 0.1;  % seconds

EgoSpeed = 25; % m/s

%% Simple Scenario (Choice #1)

% Load scenario road and extract waypoints for each lane
Scenario = load('SimpleScenario.mat');
WPs{1} = Scenario.data.ActorSpecifications(2).Waypoints;
WPs{2} = Scenario.data.ActorSpecifications(1).Waypoints;
WPs{3} = Scenario.data.ActorSpecifications(3).Waypoints;

road(scenario, WPs{2}, 'lanes',lanespec(3));

% Ego vehicle (lane 2)
egoCar = vehicle(scenario, 'ClassID', 1);
egoWPs = circshift(WPs{2},-8);
path(egoCar, egoWPs, EgoSpeed);

% Car1 (passing car in lane 3)
Car1 = vehicle(scenario, 'ClassID', 1);
Car1WPs = circshift(WPs{1},0);
path(Car1, Car1WPs, EgoSpeed + 5);

% Car2 (car in lane 1)
Car2 = vehicle(scenario, 'ClassID', 1);
Car2WPs = circshift(WPs{3},-15);
path(Car2, Car2WPs, EgoSpeed -5);

% Ego follower (lane 2)
Car3 = vehicle(scenario, 'ClassID', 1);
Car3WPs = circshift(WPs{2},+5);
path(Car3, Car3WPs, EgoSpeed);

% Car4 (stopped car in lane 1)
Car4 = vehicle(scenario, 'ClassID', 1);
Car4WPs = circshift(WPs{3},-13);
path(Car4, Car4WPs, 1);

ActorRadius = norm([Car1.Length,Car1.Width]);
%---------------------------------------------------------------------------------------------
%% Waypoint generation (Choice #2)

% % Load scenario road and extract waypoints for each lane
% WPs = GetLanesWPs('Scenario3.mat');
% % Define road wtr the middle lane waypoints
% road(scenario, WPs{2}, 'lanes',lanespec(3));
% %%%%%%%%%%%% BE CAREFUL OF LANESPACE(3) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% % Ego vehicle (lane 2)
% egoCar = vehicle(scenario, 'ClassID', 1);
% path(egoCar, WPs{2}, EgoSpeed); % On right lane
%
% % Car1 (passing car in lane 3)
% Car1 = vehicle(scenario, 'ClassID', 1);
% WPs{1} = circshift(WPs{1},20);
% path(Car1, WPs{1}, EgoSpeed + 2);
%
% % Car2 (slower car in lane 1)
% Car2 = vehicle(scenario, 'ClassID', 1);
% WPs{3} = circshift(WPs{3},-50);
% path(Car2, WPs{3}, EgoSpeed -5);

%---------------------------------------------------------------------------------------------

%% Create a Tracker
% Create a |<matlab:doc('multiObjectTracker') multiObjectTracker>| to track
% the vehicles that are close to the ego vehicle. The tracker uses the
% |initSimDemoFilter| supporting function to initialize a constant velocity
% linear Kalman filter that works with position and velocity.
%
% Tracking is done in 2-D. Although the sensors return measurements in 3-D,
% the motion itself is confined to the horizontal plane, so there is no
% need to track the height.
tracker = multiObjectTracker('FilterInitializationFcn', @initSimDemoFilter, ...
   'AssignmentThreshold', 30, 'ConfirmationParameters', [4 5]);
positionSelector = [1 0 0 0; 0 0 1 0]; % Position selector
velocitySelector = [0 1 0 0; 0 0 0 1]; % Velocity selector

%% Define Sensors and Bird's Eye Plot
sensors = SensorsConfig(egoCar,SensorsSampleRate);

BEP = createDemoDisplay(egoCar, sensors);
BEP1 = createDemoDisplay(egoCar, sensors);

%% Fusion Loop for the scenario

Tracks = [];
count = 0;
toSnap = true;
TrackerStep = 0;
time0 = 0;
currentStep = 0;
Performance.Actors.Ground  = [];
Performance.Actors.EATracks = [];
Performance.Actors.MATracks = [];
Performance.MeanDistance.EA = [];
Performance.MeanDistance.MA = [];
Performance.GhostActors.EA = [];
Performance.GhostActors.MA = [];
while advance(scenario) %&& ishghandle(BEP.Parent)    
   currentStep = currentStep + 1;
   % Get the scenario time
   time = scenario.SimulationTime;
   
   % Get the position of the other vehicle in ego vehicle coordinates
   ta = targetPoses(egoCar);

   % Simulate the sensors
   detections = {};
   isValidTime = false(1,length(sensors));
   for i = 1:length(sensors)
       [sensorDets,numValidDets,isValidTime(i)] = sensors{i}(ta, time);
       if numValidDets
           for j = 1:numValidDets
               % Vision detections do not report SNR. The tracker requires
               % that they have the same object attributes as the radar
               % detections. This adds the SNR object attribute to vision
               % detections and sets it to a NaN.
               if ~isfield(sensorDets{j}.ObjectAttributes{1}, 'SNR')
                   sensorDets{j}.ObjectAttributes{1}.SNR = NaN;
               end
           end
           detections = [detections; sensorDets]; %#ok<AGROW>
       end
   end
       
   
   % Update the tracker if there are new detections
   if any(isValidTime)
       TrackerStep = TrackerStep + 1;

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]尹晓东,刘后铭.改进的多目标多传感器数据融合相关算法[J].地质科技管理,1994(03):225-231.

🌈4 Matlab代码实现

https://mbd.pub/o/bread/Y56UmJ5x

相关文章
|
20天前
|
算法
基于Adaboost模型的数据预测和分类matlab仿真
AdaBoost(Adaptive Boosting)是一种由Yoav Freund和Robert Schapire于1995年提出的集成学习方法,旨在通过迭代训练多个弱分类器并赋予分类效果好的弱分类器更高权重,最终构建一个强分类器。该方法通过逐步调整样本权重,使算法更关注前一轮中被误分类的样本,从而逐步优化模型。示例代码在MATLAB 2022A版本中运行,展示了随着弱分类器数量增加,分类错误率的变化及测试数据的分类结果。
|
4月前
|
监控 算法 数据安全/隐私保护
基于视觉工具箱和背景差法的行人检测,行走轨迹跟踪,人员行走习惯统计matlab仿真
该算法基于Matlab 2022a,利用视觉工具箱和背景差法实现行人检测与轨迹跟踪,通过构建背景模型(如GMM),对比当前帧与模型差异,识别运动物体并统计行走习惯,包括轨迹、速度及停留时间等特征。演示三维图中幅度越大代表更常走的路线。完整代码含中文注释及操作视频。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
248 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
147 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
117 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
6月前
|
机器学习/深度学习 算法 数据挖掘
基于改进K-means的网络数据聚类算法matlab仿真
**摘要:** K-means聚类算法分析,利用MATLAB2022a进行实现。算法基于最小化误差平方和,优点在于简单快速,适合大数据集,但易受初始值影响。文中探讨了该依赖性并通过实验展示了随机初始值对结果的敏感性。针对传统算法的局限,提出改进版解决孤点影响和K值选择问题。代码中遍历不同K值,计算距离代价,寻找最优聚类数。最终应用改进后的K-means进行聚类分析。
104 10
|
7月前
|
存储 算法
基于布谷鸟搜索的多目标优化matlab仿真
该程序运用布谷鸟搜索算法进行多目标优化,设置三个目标函数,生成三维优化曲面和收敛曲线。在MATLAB2022a中运行,显示了迭代过程中的优化结果图。算法基于布谷鸟的寄生繁殖和列维飞行行为,通过非支配排序和拥挤度计算处理多目标问题。迭代中,新解不断被评估、更新并加入帕累托前沿,最终输出帕累托前沿作为最优解集。
|
7月前
|
机器学习/深度学习 算法 数据可视化
m基于PSO-LSTM粒子群优化长短记忆网络的电力负荷数据预测算法matlab仿真
在MATLAB 2022a中,应用PSO优化的LSTM模型提升了电力负荷预测效果。优化前预测波动大,优化后预测更稳定。PSO借鉴群体智能,寻找LSTM超参数(如学习率、隐藏层大小)的最优组合,以最小化误差。LSTM通过门控机制处理序列数据。代码显示了模型训练、预测及误差可视化过程。经过优化,模型性能得到改善。
119 6
|
7月前
|
机器学习/深度学习 算法
基于蛙跳优化的神经网络数据预测matlab仿真
使用MATLAB2022a,应用蛙跳优化算法(SFLA)调整神经网络权重,提升预测精度,输出预测曲线。神经网络结合输入、隐藏和输出层进行预测,蛙跳算法模仿蛙群觅食行为优化权重和阈值。算法流程包括蛙群初始化、子群划分、局部搜索及适应度更新,直至满足停止条件。优化后的神经网络能提升预测性能。
|
7月前
|
机器学习/深度学习 算法
m基于PSO-GRU粒子群优化长门控循环单元网络的电力负荷数据预测算法matlab仿真
摘要: 在MATLAB 2022a中,对比了电力负荷预测算法优化前后的效果。优化前为&quot;Ttttttt111222&quot;,优化后为&quot;Tttttttt333444&quot;,明显改进体现为&quot;Tttttttttt5555&quot;。该算法结合了粒子群优化(PSO)和长门控循环单元(GRU)网络,利用PSO优化GRU的超参数,提升预测准确性和稳定性。PSO模仿鸟群行为寻找最优解,而GRU通过更新门和重置门处理长期依赖问题。核心MATLAB程序展示了训练和预测过程,包括使用&#39;adam&#39;优化器和超参数调整,最终评估并保存预测结果。
65 0

热门文章

最新文章

相关课程

更多