《The 8 Neural Network Architectures Machine Learning Resarchers Need to Learn》电子版地址

简介: The 8 Neural Network Architectures Machine Learning Resarchers Need to Learn

《The 8 Neural Network Architectures Machine Learning Resarchers Need to Learn》The 8 Neural Network Architectures Machine Learning Resarchers Need to Learn

电子书:

屏幕快照 2022-06-17 上午9.58.35.png

                
            </div>
AI 代码解读
目录
打赏
0
0
0
0
227
分享
相关文章
【博士每天一篇文-算法】Spatially embedded recurrent neural networks reveal widespread links between
本文介绍了空间嵌入循环神经网络(seRNNs)的研究,揭示了结构和功能神经科学发现之间的联系,并展示了seRNNs如何在面临资源限制的同时,通过优化其结构拓扑来解决任务并表现出生物大脑类似的模块化和小世界特性。
43 1
【博士每天一篇文-算法】Spatially embedded recurrent neural networks reveal widespread links between
【博士每天一篇文献-算法】CircuitNet:A Generic Neural Network to Realize Universal Circuit Motif Modeling
本文介绍了CircuitNet,这是一种新型神经网络,它受到神经回路结构的启发,通过使用电路基元单元(CMUs)来模拟通用电路基元,并通过调整CMU内部权重来实现建模,在多种机器学习任务中展现出优于传统前馈网络的性能。
74 3
《Spiking Neural Networks,the Next Generation of Machine Learning》电子版地址
Spiking Neural Networks,the Next Generation of Machine Learning
91 0
《Spiking Neural Networks,the Next Generation of Machine Learning》电子版地址
《Understanding,generalisation,and transfer learning in deep neural networks》电子版地址
Understanding,generalisation,and transfer learning in deep neural networks
97 0
《Understanding,generalisation,and transfer learning in deep neural networks》电子版地址
《Graph Neural Networks- Combing Deep Learning & Symbolic Reasoning》电子版地址
Graph Neural Networks- Combing Deep Learning & Symbolic Reasoning
103 0
《Graph Neural Networks- Combing Deep Learning & Symbolic Reasoning》电子版地址
《Multi-Task Multi-Network Joint-Learning of Deep Residual Networks and Cycle-Consistency Generative Adversarial Networks for Robust Speech Recognition》电子版地址
Multi-Task Multi-Network Joint-Learning of Deep Residual Networks and Cycle-Consistency Generative Adversarial Networks for Robust Speech Recognition
122 0
《Multi-Task Multi-Network Joint-Learning of Deep Residual Networks and Cycle-Consistency Generative Adversarial Networks for Robust Speech Recognition》电子版地址
SysRec2016 | Deep Neural Networks for YouTube Recommendations
YouTube有很多用户原创内容,其商业模式和Netflix、国内的腾讯、爱奇艺等流媒体不同,后者是采购或自制的电影,并且YouTube的视频基数巨大,用户难以发现喜欢的内容。本文根据典型的两阶段信息检索二分法:首先描述一种深度候选生成模型,接着描述一种分离的深度排序模型。
289 0
SysRec2016 | Deep Neural Networks for YouTube Recommendations
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等