java多线程和锁

简介: 多线程实现方法1: 继承Thread类public class Main { public static void main(String[] args) throws InterruptedException { Worker worker1 = new Worker(); worker1.setName("thread-worker1"); Worker worker2 = new Worker(); worker2.setName("thread_worker2"); worker1.start

多线程实现

方法1: 继承Thread

public class Main {
    public static void main(String[] args) throws InterruptedException {
        Worker worker1 = new Worker();
        worker1.setName("thread-worker1");
        Worker worker2 = new Worker();
        worker2.setName("thread_worker2");
        worker1.start();
        worker2.start();
        Thread.sleep(1000);
        System.out.println("Main-thread finished!");
    }
}
class Worker extends Thread {
    @Override
    public void run() {
        for (int i = 0; i < 10; i++) {
            System.out.println("Hello " + getName());
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                throw new RuntimeException(e);
            }
        }
    }
}

方法2: 实现Runnable接口

public class Main {
    public static void main(String[] args) {
        Worker worker = new Worker("thread1");
        new Thread(worker).start();
        new Thread(worker).start();
    }
}
class Worker implements Runnable{
    private String name;
   public Worker(String name) {
       this.name = name;
   }
    @Override
    public void run() {
        for (int i = 0; i < 10; i++) {
            System.out.println("Hello " + this.name);
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                throw new RuntimeException(e);
            }
        }
    }
}

join(long millis): 等待该线程执行结束,父线程才会继续执行; 可以传入一个最长等待时间,超过该时间后继续执行父线程

例如:主线程要等worker1worker2进程结束后执行

package cc.bnblogs;
public class Main {
    public static void main(String[] args) throws InterruptedException {
        Worker worker1 = new Worker();
        worker1.setName("thread-worker1");
        Worker worker2 = new Worker();
        worker2.setName("thread_worker2");
        worker1.start();
        worker2.start();
        worker1.join(); // 只有worker1执行完成之后才会执行后面的代码
        worker2.join(); // 只有worker2执行完成之后才会执行后面的代码
        System.out.println("Main-thread finished!");
    }
}
class Worker extends Thread {
    @Override
    public void run() {
        for (int i = 0; i < 10; i++) {
            System.out.println("Hello " + getName());
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                throw new RuntimeException(e);
            }
        }
    }
}

interrupt():从休眠中中断线程

public class Main {
    public static void main(String[] args) throws InterruptedException {
        Worker worker1 = new Worker();
        worker1.setName("thread-worker1");
        Worker worker2 = new Worker();
        worker2.setName("thread_worker2");
        worker1.start();
        worker2.start();
        // 主线程最多等待worker1线程5000ms
        worker1.join(5000);
        worker1.interrupt();  // 抛出InterruptedException异常
        System.out.println("Main-thread finished!");
    }
}
class Worker extends Thread {
    @Override
    public void run() {
        for (int i = 0; i < 10; i++) {
            System.out.println("Hello " + getName());
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                // 收到InterruptedException后,结束该线程
                System.out.println(getName() + " stop!");
                break;
            }
        }
    }
}

setDaemon():设置某线程为守护线程

public class Main {
    public static void main(String[] args) throws InterruptedException {
        Worker worker1 = new Worker();
        worker1.setName("thread-worker1");
        Worker worker2 = new Worker();
        worker2.setName("thread_worker2");
        // 将worker1和worker2设置为守护线程
        // 除守护线程之外的其他线程结束后(这里只有主线程),守护线程会自动结束
        worker1.setDaemon(true);
        worker2.setDaemon(true);
        worker1.start();
        worker2.start();
        // 主线程休眠5s
        Thread.sleep(5000);
        System.out.println("Main-thread finished!");
    }
}
class Worker extends Thread {
    @Override
    public void run() {
        for (int i = 0; i < 10; i++) {
            System.out.println("Hello " + getName());
            try {
                Thread.sleep(1000);
            } catch (InterruptedException e) {
                throw new RuntimeException();
            }
        }
    }
}

lock:获取锁,如果锁已经被其他线程获取,则阻塞 unlock:释放锁,并唤醒被该锁阻塞的其他线程

防止读写冲突,同一时间只有一个线程可以拥有锁,并进行写操作

import java.util.concurrent.locks.ReentrantLock;
public class Main {
    public static void main(String[] args) throws InterruptedException {
        Worker worker1 = new Worker();
        worker1.setName("thread-worker1");
        Worker worker2 = new Worker();
        worker2.setName("thread_worker2");
        worker1.start();
        worker2.start();
        worker1.join();
        worker2.join();
        System.out.println("Main-thread finished!");
        System.out.println("cnt: " + Worker.cnt);
    }
}
class Worker extends Thread {
    private static final ReentrantLock lock = new ReentrantLock();
    public static int cnt = 0;
    @Override
    public void run() {
        for (int i = 0; i < 200000; i++) {
            lock.lock();
            try {
                cnt++;
            }finally {
                lock.unlock();
            }
        }
    }
}

同步(Synchronized)

java实现锁的语法糖,继承Thread类和实现Runnable接口的线程使用方式有点区别

还是上面的cnt++的例子

1.继承Thread

public class Main {
    public static void main(String[] args) throws InterruptedException {
        Worker worker1 = new Worker();
        worker1.setName("thread-worker1");
        Worker worker2 = new Worker();
        worker2.setName("thread_worker2");
        worker1.start();
        worker2.start();
        worker1.join();
        worker2.join();
        System.out.println("Main-thread finished!");
        System.out.println("cnt: " + Worker.cnt);
    }
}
class Worker extends Thread {
    public static int cnt = 0;
    private static final Object object = new Object();
    @Override
    public void run() {
    //锁加到了object对象上,多个线程共享一个object
        synchronized (object) {
            for (int i = 0; i < 200000; i++) {
                cnt++;
            }
        }
    }
}

2.实现Runnable接口

public class Main {
    public static void main(String[] args) throws InterruptedException {
        Worker worker = new Worker();
        Thread worker1 = new Thread(worker);
        Thread worker2 = new Thread(worker);
        worker1.start();
        worker2.start();
        worker1.join();
        worker2.join();
        System.out.println("Main-thread finished!");
        System.out.println("cnt: " + Worker.cnt);
    }
}
class Worker implements Runnable {
    public static int cnt = 0;
    @Override
    public void run() {
        //锁加到了this对象上,而两个线程是由同一个worker创建而来的
        synchronized (this) {
            for (int i = 0; i < 200000; i++) {
                cnt++;
            }
        }
    }
}

也可以直接将synchronized作用到方法上,和上面的代码等价

public class Main {
    public static void main(String[] args) throws InterruptedException {
        Worker worker = new Worker();
        Thread worker1 = new Thread(worker);
        Thread worker2 = new Thread(worker);
        worker1.start();
        worker2.start();
        worker1.join();
        worker2.join();
        System.out.println("Main-thread finished!");
        System.out.println("cnt: " + Worker.cnt);
    }
}
class Worker implements Runnable {
    public static int cnt = 0;
    @Override
    public void run() {
        Worker.work();
    }
    private synchronized static void work() {
        for (int i = 0; i < 200000; i++) {
            cnt++;
        }
    }
}

wait与notify

前面5个线程会等待1s后自动唤醒一个线程,唤醒的线程睡眠1s后叫醒下一个线程

public class Main {
    public static void main(String[] args) throws InterruptedException {
        for (int i = 0; i < 5; i++) {
            Worker worker = new Worker(true);
            worker.setName("Thread_" + i);
            worker.start();
        }
        Worker worker = new Worker(false);
        worker.setName("Thread_5");
    // 第6个线程先睡2s再去唤醒线程,这时候已经晚了
        Thread.sleep(2000);
        worker.start();
    }
}
class Worker extends Thread {
    private final boolean needWait;
    // 定义一个全局object
    private static final Object object = new Object();
    public Worker(boolean needWait) {
        this.needWait = needWait;
    }
    @Override
    public void run() {
        synchronized (object) {
            try {
                if (needWait) {
                    // 最多等待1s,超过1s会自动唤醒一个线程
                    object.wait(1000);
                    System.out.println(getName() + " 被唤醒了!");
                    //睡眠1s后继续唤醒其他线程
                    Thread.sleep(1000);
                } else {
                    // 不需要睡眠的线程唤醒一个线程
                    object.notify();
                    System.out.println("尝试唤醒其他线程");
                }
            } catch (InterruptedException e) {
                throw new RuntimeException(e);
            }
        }
    }
}

当然也可以不使用静态变量object

public class Main {
    public static void main(String[] args) throws InterruptedException {
        Object object = new Object();
        for (int i = 0; i < 5; i++) {
            Worker worker = new Worker(object, true);
            worker.setName("Thread_" + i);
            worker.start();
        }
        Worker worker = new Worker(object, false);
        worker.setName("Thread_5");
        // 第6个线程先睡2s再去唤醒线程,这时候已经晚了
        Thread.sleep(2000);
        worker.start();
    }
}
class Worker extends Thread {
    private final boolean needWait;
    private final Object object;
    public Worker(Object object, boolean needWait) {
        this.object = object;
        this.needWait = needWait;
    }
    @Override
    public void run() {
        synchronized (object) {
            try {
                if (needWait) {
                    // 最多等待1s,超过1s会自动唤醒一个线程
                    object.wait(1000);
                    System.out.println(getName() + " 被唤醒了!");
                    //睡眠1s后继续唤醒其他线程
                    Thread.sleep(1000);
                } else {
                    // 不需要睡眠的线程唤醒一个线程
                    object.notify();
                    System.out.println("尝试唤醒其他线程");
                }
            } catch (InterruptedException e) {
                throw new RuntimeException(e);
            }
        }
    }
}
相关文章
|
6天前
|
监控 Java
java异步判断线程池所有任务是否执行完
通过上述步骤,您可以在Java中实现异步判断线程池所有任务是否执行完毕。这种方法使用了 `CompletionService`来监控任务的完成情况,并通过一个独立线程异步检查所有任务的执行状态。这种设计不仅简洁高效,还能确保在大量任务处理时程序的稳定性和可维护性。希望本文能为您的开发工作提供实用的指导和帮助。
45 17
|
17天前
|
Java
Java—多线程实现生产消费者
本文介绍了多线程实现生产消费者模式的三个版本。Version1包含四个类:`Producer`(生产者)、`Consumer`(消费者)、`Resource`(公共资源)和`TestMain`(测试类)。通过`synchronized`和`wait/notify`机制控制线程同步,但存在多个生产者或消费者时可能出现多次生产和消费的问题。 Version2将`if`改为`while`,解决了多次生产和消费的问题,但仍可能因`notify()`随机唤醒线程而导致死锁。因此,引入了`notifyAll()`来唤醒所有等待线程,但这会带来性能问题。
Java—多线程实现生产消费者
|
2天前
|
缓存 安全 算法
Java 多线程 面试题
Java 多线程 相关基础面试题
|
19天前
|
安全 Java Kotlin
Java多线程——synchronized、volatile 保障可见性
Java多线程中,`synchronized` 和 `volatile` 关键字用于保障可见性。`synchronized` 保证原子性、可见性和有序性,通过锁机制确保线程安全;`volatile` 仅保证可见性和有序性,不保证原子性。代码示例展示了如何使用 `synchronized` 和 `volatile` 解决主线程无法感知子线程修改共享变量的问题。总结:`volatile` 确保不同线程对共享变量操作的可见性,使一个线程修改后,其他线程能立即看到最新值。
|
19天前
|
消息中间件 缓存 安全
Java多线程是什么
Java多线程简介:本文介绍了Java中常见的线程池类型,包括`newCachedThreadPool`(适用于短期异步任务)、`newFixedThreadPool`(适用于固定数量的长期任务)、`newScheduledThreadPool`(支持定时和周期性任务)以及`newSingleThreadExecutor`(保证任务顺序执行)。同时,文章还讲解了Java中的锁机制,如`synchronized`关键字、CAS操作及其实现方式,并详细描述了可重入锁`ReentrantLock`和读写锁`ReadWriteLock`的工作原理与应用场景。
|
19天前
|
安全 Java 编译器
深入理解Java中synchronized三种使用方式:助您写出线程安全的代码
`synchronized` 是 Java 中的关键字,用于实现线程同步,确保多个线程互斥访问共享资源。它通过内置的监视器锁机制,防止多个线程同时执行被 `synchronized` 修饰的方法或代码块。`synchronized` 可以修饰非静态方法、静态方法和代码块,分别锁定实例对象、类对象或指定的对象。其底层原理基于 JVM 的指令和对象的监视器,JDK 1.6 后引入了偏向锁、轻量级锁等优化措施,提高了性能。
42 3
|
19天前
|
存储 安全 Java
Java多线程编程秘籍:各种方案一网打尽,不要错过!
Java 中实现多线程的方式主要有四种:继承 Thread 类、实现 Runnable 接口、实现 Callable 接口和使用线程池。每种方式各有优缺点,适用于不同的场景。继承 Thread 类最简单,实现 Runnable 接口更灵活,Callable 接口支持返回结果,线程池则便于管理和复用线程。实际应用中可根据需求选择合适的方式。此外,还介绍了多线程相关的常见面试问题及答案,涵盖线程概念、线程安全、线程池等知识点。
105 2
|
27天前
|
安全 Java API
java如何请求接口然后终止某个线程
通过本文的介绍,您应该能够理解如何在Java中请求接口并根据返回结果终止某个线程。合理使用标志位或 `interrupt`方法可以确保线程的安全终止,而处理好网络请求中的各种异常情况,可以提高程序的稳定性和可靠性。
48 6
|
1月前
|
安全 算法 Java
Java多线程编程中的陷阱与最佳实践####
本文探讨了Java多线程编程中常见的陷阱,并介绍了如何通过最佳实践来避免这些问题。我们将从基础概念入手,逐步深入到具体的代码示例,帮助开发者更好地理解和应用多线程技术。无论是初学者还是有经验的开发者,都能从中获得有价值的见解和建议。 ####
|
17天前
|
Java 关系型数据库 MySQL
【JavaEE“多线程进阶”】——各种“锁”大总结
乐/悲观锁,轻/重量级锁,自旋锁,挂起等待锁,普通互斥锁,读写锁,公不公平锁,可不可重入锁,synchronized加锁三阶段过程,锁消除,锁粗化