查看登录性能优化和测试覆盖率的详细解决方案【flask框架】

简介: 查看登录性能优化和测试覆盖率的详细解决方案【flask框架】

大多数视图

对于大多数视图,用户需要登录。测试中最方便的方法是使用客户端发出POST请求并将其发送到登录视图。不是每次都写,而是写一个类,使用class方法来完成,并使用固件将其传递给每个被测试的客户端。

class AuthActions(object):
    def __init__(self, client):
        self._client = client

    def login(self, username='test', pasord='test'):
        return self._client.post(
            '/auth/login',
            data={'username': username, 'password': password}
        )

    def logout(self):
        return self._client.get('/auth/logout')


@pytest.fixture
def auth(client):
    return AuthActions(client)

通过auth固件,您可以调用authLogin()作为测试用户登录。用户数据已写入应用固件。
注册视图应在GET请求时成功呈现。在POST请求中,当表单数据合法时,视图应重定向到登录URL,并且用户的数据已保存在数据库中。如果数据非法,则应显示错误消息。

import pytest
from flask import g, session
from flaskr.db import get_db


def test_register(client, app):
    assert client.get('/auth/register').status_code == 200
    response = client.post(
        '/auth/register', data={'username': 'a', 'passd': 'a'}
    )
    assert 'http://localhost/auth/login' == response.headers['Location']

    with app.app_context():
        assert get_db().execute(
            "select * from user where username = 'a'",
        ).fetchone() is not None


@pytest.mark.parametrize(('username', 'password', 'message'), (
    ('', '', b'Username is required.'),
    ('a', '', b'Password is required.'),
    ('test', 'test', b'already registered'),
))
def test_register_validate_input(client, username, password, message):
    response = client.post(
        '/auth/register',
        data={'username': username, 'password': password}
    )
    assert message in response.data

客户Get()发出Get请求,Flask返回Response对象。类似的客户端Post()发出Post请求,并将数据字典转换为表单数据。
要测试页面是否成功呈现,请发出一个简单的请求,并检查是否返回了200OK状态_代码如果渲染失败,Flask将返回500内部服务器错误代码。
当注册视图重定向到登录视图时,标头将具有包含登录URL的Location标头。
数据包含以字节为单位的响应正文。如果要在呈现的页面中检测值,请在数据中检测它。字节值只能与字节值进行比较。如果要比较Unicode文本,请使用get_data(as_text=True)
pytest.mark。Parameterize告诉Pytest使用不同的参数运行相同的测试。这用于测试不同的非法输入和错误消息,以避免三次写入相同的代码。
登录视图的测试与寄存器的测试非常相似。后者是测试数据库中的数据,前者是会话应该包含测试login_id之后的用户

测试覆盖

为应用程序编写单元测试可以检查代码是否按预期执行。Flask提供了一个测试客户端,它可以模拟向应用程序发送请求并返回响应数据。

INSERT INTO user (username, pa)
VALUES
  ('test', 'pbkdf2:sha256:50000$TCI4GzcX$0de171a4f4dac32e3364c7ddc7c14f3e2fa61f2d17574483f7ffbb431b4acb2f'),
  ('other', 'pbkdf2:sha256:50000$kJPKsz6N$d2d4784f1b030a9761f5ccaeeaca413f27f2ecb76d6168407af962ddce849f79');

INSERT INTO post (title, body, author_id, created)
VALUES
  ('test title', 'test' || x'0a' || 'body', 1, '2018-01-01 00:00:00');

你应该尽可能多地测试。函数中的代码仅在调用函数时运行。分支中的代码(如if块中的代码)只有在满足条件时才会运行。测试应涵盖每个功能和每个分支。

import os
import tempfile

import pytest
from flaskr import create_app
from flaskr.db import get_db, init_db

with open(os.path.join(os.path.dirname(__file__), 'data.sql'), 'rb') as f:
    _data_sql = f.read().decode('utf8')


@pytest.fixture
def app():
    db_fd, db_path = tempfile.mkstemp()

    app = create_app({
        'TESTING': True,
        'DATABASE': db_path,
    })

    with app.app_context():
        init_db()
        get_db().executescript(_data_sql)

    yield app

    os.close(db_fd)
    os.unlink(db_path)


@pytest.fixture
def client(app):
    return app.test_client()


@pytest.fixture
def runner(app):
    return app.test_cli_runner()

越接近100%的测试覆盖率,就越能确保代码修改后不会发生意外。然而,100%的测试覆盖率不能保证应用程序无错误。通常,测试不包括用户如何在浏览器中与应用程序交互。然而,在开发过程中,测试覆盖率仍然非常重要。

from flaskr import create_app


def test_config():
    assert not create_app().testing
    assert create_app({'TESTING': True}).testing


def test_hello(client):
    response = client.get('/hello')
    assert response.data == b'Hello, World!'

Pytest通过将固件函数名与测试函数的参数名匹配来使用固件。例如,下面的write-test _ hello函数有一个客户端参数。Pytest将匹配客户端固件函数,调用此函数,并将返回值传递给测试函数。

def test_init_db_command(runner, monkeypatch):
    class Recorder(object):
        called = False

    def fake_init_db():
        Recorder.called = True

    monkeypatch.setattr('flaskr.db.init_db', fake_init_db)
    result = runner.invoke(args=['init-db'])
    assert 'Initialized' in result.output
    assert Recorder.called

在这里插入图片描述

相关文章
|
1月前
|
人工智能 搜索推荐 数据管理
探索软件测试中的自动化测试框架选择与优化策略
本文深入探讨了在现代软件开发流程中,如何根据项目特性、团队技能和长期维护需求,精准选择合适的自动化测试框架。
98 8
|
2天前
|
数据挖掘 测试技术 项目管理
2025年测试用例管理看这一篇就够了 ----Codes 开源免费、全面的测试管理解决方案
Codes 是国内首款重新定义 SaaS 模式的开源项目管理平台,支持云端认证、本地部署、全部功能开放,并且对 30 人以下团队免费。它通过整合迭代、看板、度量和自动化等功能,简化测试协同工作,使敏捷测试更易于实施。并提供低成本的敏捷测试解决方案,如同步在线离线测试用例、流程化管理缺陷、低代码接口自动化测试和 CI/CD,以及基于迭代的测试管理和测试用时的成本计算等,践行敏捷测试。
2025年测试用例管理看这一篇就够了 ----Codes 开源免费、全面的测试管理解决方案
|
5天前
|
存储 测试技术 API
pytest接口自动化测试框架搭建
通过上述步骤,我们成功搭建了一个基于 `pytest`的接口自动化测试框架。这个框架具备良好的扩展性和可维护性,能够高效地管理和执行API测试。通过封装HTTP请求逻辑、使用 `conftest.py`定义共享资源和前置条件,并利用 `pytest.ini`进行配置管理,可以大幅提高测试的自动化程度和执行效率。希望本文能为您的测试工作提供实用的指导和帮助。
49 15
|
14天前
|
数据采集 人工智能 自然语言处理
Midscene.js:AI 驱动的 UI 自动化测试框架,支持自然语言交互,生成可视化报告
Midscene.js 是一款基于 AI 技术的 UI 自动化测试框架,通过自然语言交互简化测试流程,支持动作执行、数据查询和页面断言,提供可视化报告,适用于多种应用场景。
136 1
Midscene.js:AI 驱动的 UI 自动化测试框架,支持自然语言交互,生成可视化报告
|
26天前
|
Linux Shell 网络安全
Kali Linux系统Metasploit框架利用 HTA 文件进行渗透测试实验
本指南介绍如何利用 HTA 文件和 Metasploit 框架进行渗透测试。通过创建反向 shell、生成 HTA 文件、设置 HTTP 服务器和发送文件,最终实现对目标系统的控制。适用于教育目的,需合法授权。
57 9
Kali Linux系统Metasploit框架利用 HTA 文件进行渗透测试实验
|
1月前
|
安全 Ubuntu Linux
Metasploit Pro 4.22.6-2024111901 (Linux, Windows) - 专业渗透测试框架
Metasploit Pro 4.22.6-2024111901 (Linux, Windows) - 专业渗透测试框架
46 9
Metasploit Pro 4.22.6-2024111901 (Linux, Windows) - 专业渗透测试框架
|
6天前
|
安全 前端开发 数据库
Python 语言结合 Flask 框架来实现一个基础的代购商品管理、用户下单等功能的简易系统
这是一个使用 Python 和 Flask 框架实现的简易代购系统示例,涵盖商品管理、用户注册登录、订单创建及查看等功能。通过 SQLAlchemy 进行数据库操作,支持添加商品、展示详情、库存管理等。用户可注册登录并下单,系统会检查库存并记录订单。此代码仅为参考,实际应用需进一步完善,如增强安全性、集成支付接口、优化界面等。
|
1月前
|
Java 测试技术 API
探索软件测试中的自动化测试框架
本文深入探讨了自动化测试在软件开发中的重要性,并详细介绍了几种流行的自动化测试框架。通过比较它们的优缺点和适用场景,旨在为读者提供选择合适自动化测试工具的参考依据。
|
1月前
|
数据管理 jenkins 测试技术
自动化测试框架的设计与实现
在软件开发周期中,测试是确保产品质量的关键步骤。本文通过介绍自动化测试框架的设计原则、组件构成以及实现方法,旨在指导读者构建高效、可靠的自动化测试系统。文章不仅探讨了自动化测试的必要性和优势,还详细描述了框架搭建的具体步骤,包括工具选择、脚本开发、执行策略及结果分析等。此外,文章还强调了持续集成环境下自动化测试的重要性,并提供了实际案例分析,以帮助读者更好地理解和应用自动化测试框架。
|
1月前
|
监控 测试技术 定位技术
探索软件测试中的自动化测试框架选择与实施###
本文不概述传统意义上的摘要内容,而是直接以一段对话形式引入,旨在激发读者兴趣。想象一下,你是一名勇敢的探险家,面前摆满了各式各样的自动化测试工具地图,每张地图都指向未知的宝藏——高效、精准的软件测试领域。我们将一起踏上这段旅程,探讨如何根据项目特性选择合适的自动化测试框架,并分享实施过程中的关键步骤与避坑指南。 ###
48 4
下一篇
开通oss服务