同步
同步是两个或两个以上耦合动力系统的出现顺序,常见于物理、生物和社会系统中。在网络同步中,图的每个节点都是一个动态系统,它的动态通过成对的相互作用受到相邻节点的影响。当相互作用使所有或宏观部分的扰动达到相干状态时,同步就发生了。
Phase oscillators
Kuramoto 模型及其高阶变形
Kuramoto 模型 是一个比较原始的模型。在该模型的动力学可描述为:$$\dot{\theta}_{i} = \omega_{i} + \frac{K_{1}}{N}\sum_{j = 1}^{N} \sin(\theta_{j} - \theta_{i}).$$ 其中,$\omega_{i}$ 表示服从某一分布的固有频率,$K_{1}$ 是耦合常数,$N$ 是振子个数,$\theta_{i} \in [0, 2 \pi]$ 表示相位。在这个系统中,有两种相反的驱动力在起作用:固有频率的非均匀性使得振子远离同步,而相互作用力又使得其趋于同步。通过 meanfield reduction approaches1 有效地将该模型简化为稳定的低维同步流形。事实上,该模型可以拓展到非全连接的状态,即 $$\dot{\theta}_{i} = \omega_{i} + \frac{K_{1}}{N}\sum_{j = 1}^{N} a_{i j} \sin(\theta_{j} - \theta_{i}).$$
简单高阶模型总结如下:
模型描述 | 动力学表示 |
---|---|
纯三体相互作用情形 | $$\dot{\theta}_{i} = \omega_{i} + \frac{K_{2}}{N^{2}} \sum_{j = 1}^{N} \sum_{k = 1}^{N} \sin(\theta_{j} + \theta_{k} - 2 \theta_{i})$$ |
兼具二体三体相互作用情形 | $$\dot{\theta}_{i} = \omega_{i} + \frac{K_{1}}{N}\sum_{j = 1}^{N} a_{i j} \sin(\theta_{j} - \theta_{i}) + \frac{K_{2}}{N^{2}} \sum_{j = 1}^{N} \sum_{k = 1}^{N} \sin(\theta_{j} - \theta_{i}) \cos(\theta_{k} - \theta_{i})$$ |
基于这些模型。进而研究更复杂的场景。
基于相位消除的高阶相互作用
将实际生活中复杂的震荡场景进行相位消除,就可以将其用基本模型进行描述。
Ashwin, Bick, Rodrigues, and coworkers have produced a series of important contributions for phase reduction of populations of identical oscillators. They have suggested that interactions beyond
pairwise might be the only way to unfold some degeneracies and unlock nontrivial dynamics. Aswhin and Rodrigues have shown that the application of phase reduction to a systems of generic nonlinear identical systems with global symmetric coupling yields the Kuramoto-Sakaguchi at the lowest order, but at the next order, terms including 2-, 3-, and 4-body interactions naturally emerge.
非线性振荡
显然,非线性振荡更广义、更普适。描述该情形的模型基于脑神经元的微分方程建模。这一部分笔者不是很感兴趣,同时超出了笔者的现有认识水平,故而略过。
- C. Bick, M. Goodfellow, C.R. Laing, E.A. Martens, Understanding the dynamics of biological and neural oscillator networks through exact mean-field reductions: A review, J. Math. Neurosci. 10 (1) (2020) 1--43. ↩