YOLOv5-C3模块实现

简介: YOLOv5-C3模块实现

一、前期准备

1.设置GPU

import torch
from torch import nn
import torchvision
from torchvision import transforms,datasets,models
import matplotlib.pyplot as plt
import os,PIL,pathlib
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

device(type='cuda')

2.导入数据

data_dir = './weather_photos/'
data_dir = pathlib.Path(data_dir)
data_paths = list(data_dir.glob('*'))
classNames = [str(path).split('\\')[1] for path in data_paths]
classNames

['cloudy', 'rain', 'shine', 'sunrise']

train_transforms = transforms.Compose([
    transforms.Resize([224,224]),# resize输入图片
    transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换成tensor
    transforms.Normalize(
        mean = [0.485, 0.456, 0.406],
        std = [0.229,0.224,0.225]) # 从数据集中随机抽样计算得到
])
test_transforms = transforms.Compose([
    transforms.Resize([224,224]),# resize输入图片
    transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换成tensor
    transforms.Normalize(
        mean = [0.485, 0.456, 0.406],
        std = [0.229,0.224,0.225]) # 从数据集中随机抽样计算得到
])
total_data = datasets.ImageFolder(data_dir,transform=train_transforms)
total_data
Dataset ImageFolder
Number of datapoints: 1125
Root location: weather_photos
StandardTransform
Transform: Compose(
Resize(size=[224, 224], interpolation=PIL.Image.BILINEAR)
ToTensor()
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
)
total_data.class_to_idx

{'cloudy': 0, 'rain': 1, 'shine': 2, 'sunrise': 3}

3.划分数据集

train_size = int(0.8*len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data,[train_size,test_size])
train_dataset,test_dataset

(<torch.utils.data.dataset.Subset at 0x1e42b97f4f0>,

<torch.utils.data.dataset.Subset at 0x1e42b196a30>)

batch_size = 4
train_dl = torch.utils.data.DataLoader(train_dataset,
                                       batch_size=batch_size,
                                       shuffle=True,
                                       num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                       batch_size=batch_size,
                                       shuffle=True,
                                       num_workers=1)
for X,y in test_dl:
    print('Shape of X [N, C, H, W]:', X.shape)
    print('Shape of y:', y.shape)
    break

Shape of X [N, C, H, W]: torch.Size([4, 3, 224, 224])

Shape of y: torch.Size([4])

二、搭建包含C3模块的模型

1.搭建模型

import torch.nn.functional as F
def autopad(k, p=None):  # kernel, padding
    # Pad to 'same'
    if p is None:
        p = k // 2 if isinstance(k, int) else [x // 2 for x in k]  # auto-pad
    return p
class Conv(nn.Module):
    # Standard convolution
    def __init__(self, c1, c2, k=1, s=1, p=None, g=1, act=True):  # ch_in, ch_out, kernel, stride, padding, groups
        super().__init__()
        self.conv = nn.Conv2d(c1, c2, k, s, autopad(k, p), groups=g, bias=False)
        self.bn = nn.BatchNorm2d(c2)
        self.act = nn.SiLU() if act is True else (act if isinstance(act, nn.Module) else nn.Identity())
    def forward(self, x):
        return self.act(self.bn(self.conv(x)))
class Bottleneck(nn.Module):
    # Standard bottleneck
    def __init__(self, c1, c2, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c_, c2, 3, 1, g=g)
        self.add = shortcut and c1 == c2
    def forward(self, x):
        return x + self.cv2(self.cv1(x)) if self.add else self.cv2(self.cv1(x))
class C3(nn.Module):
    # CSP Bottleneck with 3 convolutions
    def __init__(self, c1, c2, n=1, shortcut=True, g=1, e=0.5):  # ch_in, ch_out, number, shortcut, groups, expansion
        super().__init__()
        c_ = int(c2 * e)  # hidden channels
        self.cv1 = Conv(c1, c_, 1, 1)
        self.cv2 = Conv(c1, c_, 1, 1)
        self.cv3 = Conv(2 * c_, c2, 1)  # act=FReLU(c2)
        self.m = nn.Sequential(*(Bottleneck(c_, c_, shortcut, g, e=1.0) for _ in range(n)))
    def forward(self, x):
        return self.cv3(torch.cat((self.m(self.cv1(x)), self.cv2(x)), dim=1))
class model_K(nn.Module):
    def __init__(self):
        super(model_K, self).__init__()
        # 卷积模块
        self.Conv = Conv(3, 32, 3, 2) 
        # C3模块1
        self.C3_1 = C3(32, 64, 3, 2)
        # 全连接网络层,用于分类
        self.classifier = nn.Sequential(
            nn.Linear(in_features=802816, out_features=100),
            nn.ReLU(),
            nn.Linear(in_features=100, out_features=4)
        )
    def forward(self, x):
        x = self.Conv(x)
        x = self.C3_1(x)
        x = torch.flatten(x, start_dim=1)
        x = self.classifier(x)
        return x
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
model = model_K().to(device)
model
Using cuda device
Out[9]:
model_K(
(Conv): Conv(
(conv): Conv2d(3, 32, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(C3_1): C3(
(cv1): Conv(
(conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv2): Conv(
(conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv3): Conv(
(conv): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(m): Sequential(
(0): Bottleneck(
(cv1): Conv(
(conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv2): Conv(
(conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
)
(1): Bottleneck(
(cv1): Conv(
(conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv2): Conv(
(conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
)
(2): Bottleneck(
(cv1): Conv(
(conv): Conv2d(32, 32, kernel_size=(1, 1), stride=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
(cv2): Conv(
(conv): Conv2d(32, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(act): SiLU()
)
)
)
)
(classifier): Sequential(
(0): Linear(in_features=802816, out_features=100, bias=True)
(1): ReLU()
(2): Linear(in_features=100, out_features=4, bias=True)
)
)

2.查看模型详情

import torchsummary as summary
summary.summary(model,(3,224,224))
0
Conv2d-9 [-1, 32, 112, 112] 1,024
BatchNorm2d-10 [-1, 32, 112, 112] 64
SiLU-11 [-1, 32, 112, 112] 0
Conv-12 [-1, 32, 112, 112] 0
Conv2d-13 [-1, 32, 112, 112] 9,216
BatchNorm2d-14 [-1, 32, 112, 112] 64
SiLU-15 [-1, 32, 112, 112] 0
Conv-16 [-1, 32, 112, 112] 0
Bottleneck-17 [-1, 32, 112, 112] 0
Conv2d-18 [-1, 32, 112, 112] 1,024
BatchNorm2d-19 [-1, 32, 112, 112] 64
SiLU-20 [-1, 32, 112, 112] 0
Conv-21 [-1, 32, 112, 112] 0
Conv2d-22 [-1, 32, 112, 112] 9,216
BatchNorm2d-23 [-1, 32, 112, 112] 64
SiLU-24 [-1, 32, 112, 112] 0
Conv-25 [-1, 32, 112, 112] 0
Bottleneck-26 [-1, 32, 112, 112] 0
Conv2d-27 [-1, 32, 112, 112] 1,024
BatchNorm2d-28 [-1, 32, 112, 112] 64
SiLU-29 [-1, 32, 112, 112] 0
Conv-30 [-1, 32, 112, 112] 0
Conv2d-31 [-1, 32, 112, 112] 9,216
BatchNorm2d-32 [-1, 32, 112, 112] 64
SiLU-33 [-1, 32, 112, 112] 0
Conv-34 [-1, 32, 112, 112] 0
Bottleneck-35 [-1, 32, 112, 112] 0
Conv2d-36 [-1, 32, 112, 112] 1,024
BatchNorm2d-37 [-1, 32, 112, 112] 64
SiLU-38 [-1, 32, 112, 112] 0
Conv-39 [-1, 32, 112, 112] 0
Conv2d-40 [-1, 64, 112, 112] 4,096
BatchNorm2d-41 [-1, 64, 112, 112] 128
SiLU-42 [-1, 64, 112, 112] 0
Conv-43 [-1, 64, 112, 112] 0
C3-44 [-1, 64, 112, 112] 0
Linear-45 [-1, 100] 80,281,700
ReLU-46 [-1, 100] 0
Linear-47 [-1, 4] 404
================================================================
Total params: 80,320,536
Trainable params: 80,320,536
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 0.57
Forward/backward pass size (MB): 150.06
Params size (MB): 306.40
Estimated Total Size (MB): 457.04
---------------------------------------------------------------

三、训练模型

1.编写训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共900张图片
    num_batches = len(dataloader)   # 批次数目,29(900/32)
    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
    train_acc  /= size
    train_loss /= num_batches
    return train_acc, train_loss

2.编写测试函数

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,8(255/32=8,向上取整)
    test_loss, test_acc = 0, 0
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()
    test_acc  /= size
    test_loss /= num_batches
    return test_acc, test_loss

3、正式训练

import copy
optimizer = torch.optim.Adam(model.parameters(),lr=1e-4)
# scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.92)#学习率每5个epoch衰减成原来的1/10
loss_fn = nn.CrossEntropyLoss()
epochs     = 20
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []
best_acc = 0
for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
    # scheduler.step()#学习率衰减
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    # 保存最优模型
    if epoch_test_acc > best_acc:
        best_acc = epoch_train_acc
        best_model = copy.deepcopy(model)
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    # 获取当前学习率
    lr = optimizer.state_dict()['param_groups'][0]['lr']
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f},Lr:{:.2E}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss, lr))
# 保存最佳模型
PATH = './best_model.pth'
torch.save(model.state_dict(),PATH)
print('Done')
print('best_acc:',best_acc)1.

Epoch:18, Train_acc:99.1%, Train_loss:0.043, Test_acc:84.9%,Test_loss:1.605,Lr:1.00E-04


Epoch:19, Train_acc:99.8%, Train_loss:0.009, Test_acc:89.8%,Test_loss:1.085,Lr:1.00E-04


Epoch:20, Train_acc:99.4%, Train_loss:0.014, Test_acc:89.3%,Test_loss:1.053,Lr:1.00E-04


Done


best_acc: 0.9666666666666667

四、结果可视化

1.Loss与Accuracy图

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率
epochs_range = range(epochs)
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

2.模型评估

best_model.eval()
epoch_test_acc,epoch_test_loss = test(test_dl,best_model,loss_fn)
epoch_test_acc,epoch_test_loss

(0.8844444444444445, 1.0431718131294474)

1. 
# 查看是否与我们最高准确率一致
2. epoch_test_acc

0.8844444444444445

相关文章
|
机器学习/深度学习 编解码 算法
yolo原理系列——yolov1--yolov5详细解释
yolo原理系列——yolov1--yolov5详细解释
1194 0
yolo原理系列——yolov1--yolov5详细解释
|
9天前
|
计算机视觉
目标检测笔记(二):测试YOLOv5各模块的推理速度
这篇文章是关于如何测试YOLOv5中不同模块(如SPP和SPPF)的推理速度,并通过代码示例展示了如何进行性能分析。
36 3
|
3月前
|
机器学习/深度学习 文件存储 算法框架/工具
【YOLOv8改进- Backbone主干】2024最新轻量化网络MobileNetV4替换YoloV8的BackBone
YOLO目标检测专栏聚焦于模型的改进和实战应用,介绍了MobileNetV4,它在移动设备上优化了架构。文章提到了UIB(通用反向瓶颈)模块,结合了多种结构,增强了特征提取;Mobile MQA是专为移动平台设计的注意力层,提升了速度;优化的NAS提升了搜索效率。通过这些创新,MNv4在不同硬件上实现了性能和效率的平衡,且通过蒸馏技术提高了准确性。模型在Pixel 8 EdgeTPU上达到87%的ImageNet-1K准确率,延迟仅为3.8ms。论文、PyTorch和TensorFlow实现代码链接也已提供。
|
5月前
|
算法框架/工具 开发工具 git
【项目--Hi3559A】(caffe-yolov3)yolov3的darknet模型转caffe模型详细教程
【项目--Hi3559A】(caffe-yolov3)yolov3的darknet模型转caffe模型详细教程
65 1
【项目--Hi3559A】(caffe-yolov3)yolov3的darknet模型转caffe模型详细教程
|
5月前
|
算法 PyTorch Go
深入解析yolov5,为什么算法都是基于yolov5做改进的?(一)
深入解析yolov5,为什么算法都是基于yolov5做改进的?(一)
|
5月前
|
算法 文件存储 计算机视觉
【YOLOv8改进】MobileNetV3替换Backbone (论文笔记+引入代码)
YOLO目标检测专栏探讨了MobileNetV3的创新改进,该模型通过硬件感知的NAS和NetAdapt算法优化,适用于手机CPU。引入的新架构包括反转残差结构和线性瓶颈层,提出高效分割解码器LR-ASPP,提升了移动设备上的分类、检测和分割任务性能。MobileNetV3-Large在ImageNet上准确率提升3.2%,延迟降低20%,COCO检测速度增快25%。MobileNetV3-Small则在保持相近延迟下,准确率提高6.6%。此外,还展示了MobileNetV3_InvertedResidual模块的代码实现。
|
5月前
|
机器学习/深度学习 编解码 监控
深入解析YOLOv2
深入解析YOLOv2
|
5月前
|
机器学习/深度学习 数据处理 计算机视觉
YOLOv5改进 | 2023 | 将RT-DETR模型AIFI模块和Conv模块结合替换SPPF(全网独家改进)
YOLOv5改进 | 2023 | 将RT-DETR模型AIFI模块和Conv模块结合替换SPPF(全网独家改进)
269 0
|
5月前
|
机器学习/深度学习 数据处理 计算机视觉
YOLOv8改进 | 2023 | 将RT-DETR模型AIFI模块和Conv模块结合替换SPPF(全网独家改进)
YOLOv8改进 | 2023 | 将RT-DETR模型AIFI模块和Conv模块结合替换SPPF(全网独家改进)
222 0
|
12月前
|
JSON Kubernetes API
使用FastAPI部署Ultralytics YOLOv5模型
YOLO是You Only Look Once(你只看一次)的缩写,它具有识别图像中的物体的非凡能力,在日常应用中会经常被使用。所以在本文中,我们将介绍如何使用FastAPI的集成YOLOv5,这样我们可以将YOLOv5做为API对外提供服务。
272 5