pytorch实现好莱坞明星识别

简介: pytorch实现好莱坞明星识别

一、前期准备

1.设置GPU

import torch
from torch import nn
import torchvision
from torchvision import transforms,datasets,models
import matplotlib.pyplot as plt
import os,PIL,pathlib
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

device(type='cuda')

2.导入数据

data_dir = './hlw/'
data_dir = pathlib.Path(data_dir)
data_paths = list(data_dir.glob('*'))
classNames = [str(path).split('\\')[1] for path in data_paths]
classNames
['Angelina Jolie',
 'Brad Pitt',
 'Denzel Washington',
 'Hugh Jackman',
 'Jennifer Lawrence',
 'Johnny Depp',
 'Kate Winslet',
 'Leonardo DiCaprio',
 'Megan Fox',
 'Natalie Portman',
 'Nicole Kidman',
 'Robert Downey Jr',
 'Sandra Bullock',
 'Scarlett Johansson',
 'Tom Cruise',
 'Tom Hanks',
 'Will Smith']
train_transforms = transforms.Compose([
    transforms.Resize([224,224]),# resize输入图片
    transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换成tensor
    transforms.Normalize(
        mean = [0.485, 0.456, 0.406],
        std = [0.229,0.224,0.225]) # 从数据集中随机抽样计算得到
])
total_data = datasets.ImageFolder(data_dir,transform=train_transforms)
total_data
Dataset ImageFolder
    Number of datapoints: 1800
    Root location: hlw
    StandardTransform
Transform: Compose(
               Resize(size=[224, 224], interpolation=PIL.Image.BILINEAR)
               ToTensor()
               Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
           )

3.数据集划分

train_size = int(0.8*len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data,[train_size,test_size])
train_dataset,test_dataset1.

(<torch.utils.data.dataset.Subset at 0x12f8aceda00>,

<torch.utils.data.dataset.Subset at 0x12f8acedac0>)

train_size,test_size

(1440, 360)

batch_size = 32
train_dl = torch.utils.data.DataLoader(train_dataset,
                                       batch_size=batch_size,
                                       shuffle=True,
                                       num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                       batch_size=batch_size,
                                       shuffle=True,
                                       num_workers=1)

4. 数据可视化

imgs, labels = next(iter(train_dl))
imgs.shape

torch.Size([32, 3, 224, 224])

import numpy as np
 # 指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch)
plt.figure(figsize=(20, 5)) 
for i, imgs in enumerate(imgs[:20]):
    npimg = imgs.numpy().transpose((1,2,0))
    npimg = npimg * np.array((0.229, 0.224, 0.225)) + np.array((0.485, 0.456, 0.406))
    npimg = npimg.clip(0, 1)
    # 将整个figure分成2行10列,绘制第i+1个子图。
    plt.subplot(2, 10, i+1)
    plt.imshow(npimg)
    plt.axis('off')

for X,y in test_dl:
    print('Shape of X [N, C, H, W]:', X.shape)
    print('Shape of y:', y.shape)
    break

Shape of X [N, C, H, W]: torch.Size([32, 3, 224, 224])

Shape of y: torch.Size([32])

二、构建简单的CNN网络

from torchvision.models import vgg16
model = vgg16(pretrained = True).to(device)
for param in model.parameters():
    param.requires_grad = False
model.classifier._modules['6'] = nn.Linear(4096,len(classNames))
model.to(device)
model
VGG(
  (features): Sequential(
    (0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (1): ReLU(inplace=True)
    (2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (3): ReLU(inplace=True)
    (4): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (5): Conv2d(64, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (6): ReLU(inplace=True)
    (7): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (8): ReLU(inplace=True)
    (9): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (10): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (11): ReLU(inplace=True)
    (12): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (13): ReLU(inplace=True)
    (14): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (15): ReLU(inplace=True)
    (16): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (17): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (18): ReLU(inplace=True)
    (19): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (20): ReLU(inplace=True)
    (21): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (22): ReLU(inplace=True)
    (23): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
    (24): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (25): ReLU(inplace=True)
    (26): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (27): ReLU(inplace=True)
    (28): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))
    (29): ReLU(inplace=True)
    (30): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  )
  (avgpool): AdaptiveAvgPool2d(output_size=(7, 7))
  (classifier): Sequential(
    (0): Linear(in_features=25088, out_features=4096, bias=True)
    (1): ReLU(inplace=True)
    (2): Dropout(p=0.5, inplace=False)
    (3): Linear(in_features=4096, out_features=4096, bias=True)
    (4): ReLU(inplace=True)
    (5): Dropout(p=0.5, inplace=False)
    (6): Linear(in_features=4096, out_features=17, bias=True)
  )
)
# 查看要训练的层
params_to_update = model.parameters()
# params_to_update = []
for name,param in model.named_parameters():
    if param.requires_grad == True:
#         params_to_update.append(param)
        print("\t",name)

三、训练模型

1.优化器设置

# 优化器设置
optimizer = torch.optim.Adam(params_to_update, lr=1e-4)#要训练什么参数/
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.92)#学习率每5个epoch衰减成原来的1/10
loss_fn = nn.CrossEntropyLoss()

2.编写训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共900张图片
    num_batches = len(dataloader)   # 批次数目,29(900/32)
    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
    train_acc  /= size
    train_loss /= num_batches
    return train_acc, train_loss

3.编写测试函数

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,8(255/32=8,向上取整)
    test_loss, test_acc = 0, 0
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()
    test_acc  /= size
    test_loss /= num_batches
    return test_acc, test_loss

4、正式训练

训练输出层

epochs     = 20
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []
best_acc = 0
filename='checkpoint.pth'
for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
    scheduler.step()#学习率衰减
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    # 保存最优模型
    if epoch_test_acc > best_acc:
        best_acc = epoch_train_acc
        state = {
            'state_dict': model.state_dict(),#字典里key就是各层的名字,值就是训练好的权重
            'best_acc': best_acc,
            'optimizer' : optimizer.state_dict(),
        }
        torch.save(state, filename)
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')
print('best_acc:',best_acc)

Epoch: 1, Train_acc:12.2%, Train_loss:2.701, Test_acc:13.9%,Test_loss:2.544

Epoch: 2, Train_acc:20.8%, Train_loss:2.386, Test_acc:20.6%,Test_loss:2.377

Epoch: 3, Train_acc:26.1%, Train_loss:2.228, Test_acc:22.5%,Test_loss:2.274

...

Epoch:19, Train_acc:51.6%, Train_loss:1.528, Test_acc:35.8%,Test_loss:1.864

Epoch:20, Train_acc:53.9%, Train_loss:1.499, Test_acc:35.3%,Test_loss:1.852

Done

best_acc: 0.37430555555555556

继续训练所有层

for param in model.parameters():
    param.requires_grad = True
# 再继续训练所有的参数,学习率调小一点
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.92)
# 损失函数
criterion = nn.CrossEntropyLoss()
# 加载之前训练好的权重参数
checkpoint = torch.load(filename)
best_acc = checkpoint['best_acc']
model.load_state_dict(checkpoint['state_dict'])
epochs     = 20
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []
best_acc = 0
filename='best_vgg16.pth'
for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, optimizer)
    scheduler.step()#学习率衰减
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    # 保存最优模型
    if epoch_test_acc > best_acc:
        best_acc = epoch_test_acc
        state = {
            'state_dict': model.state_dict(),#字典里key就是各层的名字,值就是训练好的权重
            'best_acc': best_acc,
            'optimizer' : optimizer.state_dict(),
        }
        torch.save(state, filename)
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')
print('best_acc:',best_acc)

Epoch: 1, Train_acc:41.0%, Train_loss:1.654, Test_acc:57.5%,Test_loss:1.301

Epoch: 2, Train_acc:72.3%, Train_loss:0.781, Test_acc:58.9%,Test_loss:1.139

Epoch: 3, Train_acc:87.0%, Train_loss:0.381, Test_acc:67.8%,Test_loss:1.079

...

Epoch:19, Train_acc:99.3%, Train_loss:0.033, Test_acc:74.2%,Test_loss:0.895

Epoch:20, Train_acc:99.9%, Train_loss:0.003, Test_acc:74.4%,Test_loss:1.001

Done

best_acc: 0.7666666666666667

四、结果可视化

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率
epochs_range = range(epochs)
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

相关文章
|
4月前
|
机器学习/深度学习 算法 PyTorch
【从零开始学习深度学习】45. Pytorch迁移学习微调方法实战:使用微调技术进行2分类图片热狗识别模型训练【含源码与数据集】
【从零开始学习深度学习】45. Pytorch迁移学习微调方法实战:使用微调技术进行2分类图片热狗识别模型训练【含源码与数据集】
|
机器学习/深度学习 PyTorch 算法框架/工具
从零开始学Pytorch(十九)之Kaggle上的狗品种识别
从零开始学Pytorch(十九)之Kaggle上的狗品种识别
|
机器学习/深度学习 存储 数据采集
用Pytorch构建一个喵咪识别模型
用Pytorch构建一个喵咪识别模型
79 0
|
数据采集 机器学习/深度学习 JSON
【Pytorch神经网络实战案例】32 使用Transformers库的管道方式实现:加载指定模型+文本分类+掩码语言建模+摘要生成+特征提取+阅读理解+实体词识别
在Transformers库中pipeline类的源码文件pipelines.py里,可以找到管道方式自动下载的预编译模型地址。可以根据这些地址,使用第三方下载工具将其下载到本地。
784 0
|
机器学习/深度学习 PyTorch 算法框架/工具
【Pytorch神经网络实战案例】29 【代码汇总】GitSet模型进行步态与身份识别(CASIA-B数据集)
【Pytorch神经网络实战案例】29 【代码汇总】GitSet模型进行步态与身份识别(CASIA-B数据集)
222 0
|
机器学习/深度学习 PyTorch 测试技术
【Pytorch神经网络实战案例】28 GitSet模型进行步态与身份识别(CASIA-B数据集)
该数据集是一个大规模的、多视角的步态库。其中包括124个人,每个人有11个视角(0,18,36,...,180),在3种行走条件(普通、穿大衣、携带包裹)下采集。
390 0
|
机器学习/深度学习 人工智能 监控
【Pytorch神经网络理论篇】 35 GaitSet模型:步态识别思路+水平金字塔池化+三元损失
步态特征的距离匹配,对人在多拍摄角度、多行走条件下进行特征提取,得到基于个体的步态特征,再用该特征与其他个体进行比较,从而识别出该个体的具体身份。
439 0
|
机器学习/深度学习 PyTorch 算法框架/工具
【Pytorch神经网络实战案例】25 (带数据增强)基于迁移学习识别多种鸟类(CUB-200数据集)
在目前分类效果最好的EficientNet系列模型中,EfficientNet-B7版本的模型就是使用随机数据增强方法训练而成的。
380 0
|
机器学习/深度学习 PyTorch 算法框架/工具
【Pytorch神经网络实战案例】24 基于迁移学习识别多种鸟类(CUB-200数据集)
迁移学习指将在一个任务上训练完成的模型进行简单的修改,再用另一个任务的数据继续训练,使之能够完成新的任务。
682 0
|
机器学习/深度学习 数据可视化 算法
【Pytorch神经网络实战案例】23 使用ImagNet的预训练模型识别图片内容
Imagenet数据集是目前深度学习图像领域应用得非常多的一个领域,关于图像分类、定位、检测等研究工作大多基于此数据集展开。
590 0