pytorch实现运动鞋分类

本文涉及的产品
函数计算FC,每月15万CU 3个月
简介: pytorch实现运动鞋分类

一、前期准备

1. 设置GPU

import torch
from torch import nn
import torchvision
from torchvision import transforms,datasets,models
import matplotlib.pyplot as plt
import os,PIL,pathlib
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device

device(type='cuda')

2. 导入数据

data_dir = './data/'
data_dir = pathlib.Path(data_dir)
image_count = len(list(data_dir.glob('*/*/*.jpg')))
print("图片总数为:",image_count)

图片总数为: 578

classNames = [str(path).split('\\')[2] for path in data_dir.glob('train/*/')]
classNames

['adidas', 'nike']

roses= list(data_dir.glob('train/nike/*.jpg'))
PIL.Image.open(str(roses[0]))

3. 数据增强 解决过拟合

train_transforms = transforms.Compose([
        transforms.Resize([224, 224]),
       transforms.RandomRotation(45),#随机旋转,-45到45度之间随机选
#       transforms.CenterCrop(224),#从中心开始裁剪
        transforms.RandomHorizontalFlip(p=0.5),#随机水平翻转 选择一个概率概率
#         transforms.RandomVerticalFlip(p=0.5),#随机垂直翻转
#         transforms.ColorJitter(brightness=0.2, contrast=0.1, saturation=0.1, hue=0.1),#参数1为亮度,参数2为对比度,参数3为饱和度,参数4为色相
#         transforms.RandomGrayscale(p=0.025),#概率转换成灰度率,3通道就是R=G=B
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])#均值,标准差
    ])
test_transforms = transforms.Compose([
        transforms.Resize([224, 224]),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])
batch_size = 32
train_dataset = datasets.ImageFolder('./data/train/', transform = train_transforms)
test_dataset = datasets.ImageFolder('./data/test/', transform = test_transforms)
train_dl = torch.utils.data.DataLoader(train_dataset, 
                                       batch_size=batch_size, 
                                       shuffle=True, 
                                       num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                      batch_size=batch_size, 
                                      shuffle=True, 
                                      num_workers=1)
classNames = train_dataset.classes
train_dataset.class_to_idx

{'adidas': 0, 'nike': 1}

4. 数据可视化

imgs, labels = next(iter(train_dl))
imgs.shape
import numpy as np
 # 指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch)
plt.figure(figsize=(20, 5)) 
for i, imgs in enumerate(imgs[:20]):
    npimg = imgs.numpy().transpose((1,2,0))
    npimg = npimg * np.array((0.229, 0.224, 0.225)) + np.array((0.485, 0.456, 0.406))
    npimg = npimg.clip(0, 1)
    # 将整个figure分成2行10列,绘制第i+1个子图。
    plt.subplot(2, 10, i+1)
    plt.imshow(npimg)
    plt.axis('off')

for X,y in test_dl:
    print('Shape of X [N, C, H, W]:', X.shape)
    print('Shape of y:', y.shape)
    break

Shape of X [N, C, H, W]: torch.Size([32, 3, 224, 224])

Shape of y: torch.Size([32])

二、构建CNN网络

2.1 搭建简单网络

搭建简单网络后发现由于数据量少导致过拟合,数据增强后最高准确率84%,说明模型不够好,选择改用Resnet18+迁移学习:

2.2 迁移学习

2.2.1 调用resnet18和预训练模型、冻结参数

feature_extract = True
# 冻结参数
def set_parameter_requires_grad(model, feature_extracting):
    if feature_extracting:
        for param in model.parameters():
            param.requires_grad = False
# 修改输出层
def initialize_model(num_classes, feature_extract, use_pretrained=True):
    model_ft = models.resnet18(pretrained=use_pretrained)
    set_parameter_requires_grad(model_ft, feature_extract)
    num_ftrs = model_ft.fc.in_features
    model_ft.fc = nn.Linear(num_ftrs, num_classes)
    input_size = 32
    return model_ft, input_size
model_ft, input_size = initialize_model(2, feature_extract, use_pretrained=True)
model_ft = model_ft.to(device)
model_ft

2.2.2 取出输出层参数

取出输出层参数  后面用于训练更新

# 设置训练哪些层
params_to_update = model_ft.parameters()
print("Params to learn:")
if feature_extract: # 自己只训练输出层
    params_to_update = []
    for name,param in model_ft.named_parameters():
        if param.requires_grad == True:
            params_to_update.append(param)
            print("\t",name)
else:
    for name,param in model_ft.named_parameters():
        if param.requires_grad == True:
            print("\t",name)

Params to learn:

 fc.weight

 fc.bias

三、训练模型

3.1 设置超参数

动态学习率

# 优化器设置
optimizer = torch.optim.Adam(params_to_update, lr=1e-4)#要训练啥参数,你来定
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.92)#学习率每7个epoch衰减成原来的1/10
loss_fn = nn.CrossEntropyLoss()
# def adjust_learning_rate(optimizer, epoch, start_lr):
#     # 每2个 epoch衰减到原来的0.98
#     lr = start_lr * (0.92 ** (epoch //2))
#     for param_group in optimizer.param_groups:
#         param_group['lr'] = lr
# optimizer = torch.optim.Adam(params_to_update,lr=1e-4)

3.2 编写训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共900张图片
    num_batches = len(dataloader)   # 批次数目,29(900/32)
    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
    train_acc  /= size
    train_loss /= num_batches
    return train_acc, train_loss

3.3 编写测试函数

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,8(255/32=8,向上取整)
    test_loss, test_acc = 0, 0
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()
    test_acc  /= size
    test_loss /= num_batches
    return test_acc, test_loss

3.4 正式训练

3.4.1 训练输出层

epochs     = 20
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []
best_acc = 0
filename='checkpoint.pth'
for epoch in range(epochs):
    model_ft.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model_ft, loss_fn, optimizer)
    scheduler.step()#学习率衰减
    model_ft.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model_ft, loss_fn)
    # 保存最优模型
    if epoch_test_acc > best_acc:
        best_acc = epoch_test_acc
        state = {
            'state_dict': model_ft.state_dict(),#字典里key就是各层的名字,值就是训练好的权重
            'best_acc': best_acc,
            'optimizer' : optimizer.state_dict(),
        }
        torch.save(state, filename)
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')
print('best_acc:',best_acc)

Epoch:17, Train_acc:65.9%, Train_loss:0.630, Test_acc:67.1%,Test_loss:0.615

Epoch:18, Train_acc:66.1%, Train_loss:0.613, Test_acc:64.5%,Test_loss:0.599

Epoch:19, Train_acc:63.7%, Train_loss:0.636, Test_acc:65.8%,Test_loss:0.579

Epoch:20, Train_acc:66.3%, Train_loss:0.612, Test_acc:65.8%,Test_loss:0.583

Done

best_acc: 0.6593625498007968

3.4.2 训练所有层

for param in model_ft.parameters():
    param.requires_grad = True
# 再继续训练所有的参数,学习率调小一点
optimizer = torch.optim.Adam(model_ft.parameters(), lr=1e-4)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.92)
# 损失函数
criterion = nn.CrossEntropyLoss()
# 加载之前训练好的权重参数
checkpoint = torch.load(filename)
best_acc = checkpoint['best_acc']
model_ft.load_state_dict(checkpoint['state_dict'])
epochs     = 20
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []
best_acc = 0
filename='best_resnet18.pth'
for epoch in range(epochs):
    model_ft.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model_ft, loss_fn, optimizer)
    scheduler.step()#学习率衰减
    model_ft.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model_ft, loss_fn)
    # 保存最优模型
    if epoch_test_acc > best_acc:
        best_acc = epoch_test_acc
        state = {
            'state_dict': model_ft.state_dict(),#字典里key就是各层的名字,值就是训练好的权重
            'best_acc': best_acc,
            'optimizer' : optimizer.state_dict(),
        }
        torch.save(state, filename)
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epoch_test_acc)
    test_loss.append(epoch_test_loss)
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')
print('best_acc:',best_acc)

Epoch:18, Train_acc:99.8%, Train_loss:0.010, Test_acc:86.8%,Test_loss:0.398

Epoch:19, Train_acc:99.0%, Train_loss:0.031, Test_acc:93.4%,Test_loss:0.203

Epoch:20, Train_acc:99.2%, Train_loss:0.019, Test_acc:93.4%,Test_loss:0.184

Done

best_acc: 0.9342105263157895

四、结果可视化

加载训练好的模型

model_ft, input_size = initialize_model(2, feature_extract, use_pretrained=True)
# GPU模式
model_ft = model_ft.to(device)
# 保存文件的名字
filename='best_resnet18.pth'
# 加载模型
checkpoint = torch.load(filename)
best_acc = checkpoint['best_acc']
model_ft.load_state_dict(checkpoint['state_dict'])

结果可视化

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率
epochs_range = range(epochs)
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

测试模型

train_on_gpu = True
# 得到一个batch的测试数据
imgs, labels = next(iter(train_dl))
# 进行预测
model_ft.eval()
if train_on_gpu:
    output = model_ft(imgs.cuda())
else:
    output = model_ft(imgs)
# 获得预测结果(概率最大的)
_, preds_tensor = torch.max(output, 1)
preds = np.squeeze(preds_tensor.numpy()) if not train_on_gpu else np.squeeze(preds_tensor.cpu().numpy())
preds

array([0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1,

      0, 0, 0, 0, 1, 0, 1, 0, 0, 1], dtype=int64)

import numpy as np
 # 指定图片大小,图像大小为20宽、5高的绘图(单位为英寸inch)
plt.figure(figsize=(20, 10)) 
for idx, imgs in enumerate(imgs[:10]):
    #ax = fig.add_subplot(rows, columns, idx+1, xticks=[], yticks=[])
    npimg = imgs.numpy().transpose((1,2,0))
    npimg = npimg * np.array((0.229, 0.224, 0.225)) + np.array((0.485, 0.456, 0.406))
    npimg = npimg.clip(0, 1)
    # 将整个figure分成2行10列,绘制第i+1个子图。
    ax = plt.subplot(2, 5, idx+1)
    ax.set_title("{} ({})".format(classNames[preds[idx]], classNames[labels[idx]]),
                 color=("green" if classNames[preds[idx]]==classNames[labels[idx]] else "red"))
    plt.imshow(npimg)
    plt.axis('off')

相关实践学习
部署Stable Diffusion玩转AI绘画(GPU云服务器)
本实验通过在ECS上从零开始部署Stable Diffusion来进行AI绘画创作,开启AIGC盲盒。
相关文章
|
5月前
|
机器学习/深度学习 算法 PyTorch
用PyTorch轻松实现二分类:逻辑回归入门
用PyTorch轻松实现二分类:逻辑回归入门
用PyTorch轻松实现二分类:逻辑回归入门
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
Pytorch CIFAR10图像分类 Swin Transformer篇(一)
Pytorch CIFAR10图像分类 Swin Transformer篇(一)
|
5月前
|
机器学习/深度学习 数据可视化 算法
Pytorch CIFAR10图像分类 Swin Transformer篇(二)
Pytorch CIFAR10图像分类 Swin Transformer篇(二)
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
Pytorch使用VGG16模型进行预测猫狗二分类
深度学习已经在计算机视觉领域取得了巨大的成功,特别是在图像分类任务中。VGG16是深度学习中经典的卷积神经网络(Convolutional Neural Network,CNN)之一,由牛津大学的Karen Simonyan和Andrew Zisserman在2014年提出。VGG16网络以其深度和简洁性而闻名,是图像分类中的重要里程碑。
320 0
|
5月前
|
机器学习/深度学习 数据采集 PyTorch
使用PyTorch解决多分类问题:构建、训练和评估深度学习模型
使用PyTorch解决多分类问题:构建、训练和评估深度学习模型
使用PyTorch解决多分类问题:构建、训练和评估深度学习模型
|
5月前
|
机器学习/深度学习 PyTorch 算法框架/工具
【PyTorch实战演练】使用Cifar10数据集训练LeNet5网络并实现图像分类(附代码)
【PyTorch实战演练】使用Cifar10数据集训练LeNet5网络并实现图像分类(附代码)
377 0
|
4月前
|
机器学习/深度学习 自然语言处理 算法
【从零开始学习深度学习】49.Pytorch_NLP项目实战:文本情感分类---使用循环神经网络RNN
【从零开始学习深度学习】49.Pytorch_NLP项目实战:文本情感分类---使用循环神经网络RNN
|
3月前
|
PyTorch 算法框架/工具 索引
pytorch实现水果2分类(蓝莓,苹果)
pytorch实现水果2分类(蓝莓,苹果)
|
5月前
|
机器学习/深度学习 JSON PyTorch
图神经网络入门示例:使用PyTorch Geometric 进行节点分类
本文介绍了如何使用PyTorch处理同构图数据进行节点分类。首先,数据集来自Facebook Large Page-Page Network,包含22,470个页面,分为四类,具有不同大小的特征向量。为训练神经网络,需创建PyTorch Data对象,涉及读取CSV和JSON文件,处理不一致的特征向量大小并进行归一化。接着,加载边数据以构建图。通过`Data`对象创建同构图,之后数据被分为70%训练集和30%测试集。训练了两种模型:MLP和GCN。GCN在测试集上实现了80%的准确率,优于MLP的46%,展示了利用图信息的优势。
82 1
|
4月前
|
机器学习/深度学习 算法 PyTorch
【从零开始学习深度学习】50.Pytorch_NLP项目实战:卷积神经网络textCNN在文本情感分类的运用
【从零开始学习深度学习】50.Pytorch_NLP项目实战:卷积神经网络textCNN在文本情感分类的运用