SELECT COUNT(*) 会造成全表扫描?回去等通知吧

简介: 网上有一种说法,针对无 where_clause 的 **COUNT(\*)**,MySQL 是有优化的,优化器会选择成本最小的辅助索引查询计数,其实反而性能最高,这种说法对不对呢针对这个疑问,我首先去生产上找了一个千万级别的表使用 EXPLAIN 来查询了一下执行计划
本文已经收录到Github仓库,该仓库包含 计算机基础、Java基础、多线程、JVM、数据库、Redis、Spring、Mybatis、SpringMVC、SpringBoot、分布式、微服务、设计模式、架构、校招社招分享等核心知识点,欢迎star~

Github地址:https://github.com/Tyson0314/Java-learning

前言

SELECT COUNT(*)会不会导致全表扫描引起慢查询呢?

SELECT COUNT(*) FROM SomeTable

网上有一种说法,针对无 where_clause 的 COUNT(*),MySQL 是有优化的,优化器会选择成本最小的辅助索引查询计数,其实反而性能最高,这种说法对不对呢

针对这个疑问,我首先去生产上找了一个千万级别的表使用 EXPLAIN 来查询了一下执行计划

EXPLAIN SELECT COUNT(*) FROM SomeTable

结果如下

如图所示: 发现确实此条语句在此例中用到的并不是主键索引,而是辅助索引,实际上在此例中我试验了,不管是 COUNT(1),还是 COUNT(),MySQL 都会用成本最小的辅助索引查询方式来计数,也就是使用 COUNT() 由于 MySQL 的优化已经保证了它的查询性能是最好的!随带提一句,COUNT()是 SQL92 定义的标准统计行数的语法,并且效率高,所以请直接使用COUNT()查询表的行数!

所以这种说法确实是对的。但有个前提,在 MySQL 5.6 之后的版本中才有这种优化。

那么这个成本最小该怎么定义呢,有时候在 WHERE 中指定了多个条件,为啥最终 MySQL 执行的时候却选择了另一个索引,甚至不选索引?

本文将会给你答案,本文将会从以下两方面来分析

  • SQL 选用索引的执行成本如何计算
  • 实例说明

SQL 选用索引的执行成本如何计算

就如前文所述,在有多个索引的情况下, 在查询数据前,MySQL 会选择成本最小原则来选择使用对应的索引,这里的成本主要包含两个方面。

  • IO 成本: 即从磁盘把数据加载到内存的成本,默认情况下,读取数据页的 IO 成本是 1,MySQL 是以页的形式读取数据的,即当用到某个数据时,并不会只读取这个数据,而会把这个数据相邻的数据也一起读到内存中,这就是有名的程序局部性原理,所以 MySQL 每次会读取一整页,一页的成本就是 1。所以 IO 的成本主要和页的大小有关
  • CPU 成本:将数据读入内存后,还要检测数据是否满足条件和排序等 CPU 操作的成本,显然它与行数有关,默认情况下,检测记录的成本是 0.2。

实例说明

为了根据以上两个成本来算出使用索引的最终成本,我们先准备一个表(以下操作基于 MySQL 5.7.18)

CREATE TABLE `person` (
  `id` bigint(20) NOT NULL AUTO_INCREMENT,
  `name` varchar(255) NOT NULL,
  `score` int(11) NOT NULL,
  `create_time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
  PRIMARY KEY (`id`),
  KEY `name_score` (`name`(191),`score`),
  KEY `create_time` (`create_time`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

这个表除了主键索引之外,还有另外两个索引, name_score 及 create_time。然后我们在此表中插入 10 w 行数据,只要写一个存储过程调用即可,如下:

CREATE PROCEDURE insert_person()
begin
    declare c_id integer default 1;
    while c_id<=100000 do
    insert into person values(c_id, concat('name',c_id), c_id+100, date_sub(NOW(), interval c_id second));
    set c_id=c_id+1;
    end while;
end

插入之后我们现在使用 EXPLAIN 来计算下统计总行数到底使用的是哪个索引

EXPLAIN SELECT COUNT(*) FROM person

图片

从结果上看它选择了 create_time 辅助索引,显然 MySQL 认为使用此索引进行查询成本最小,这也是符合我们的预期,使用辅助索引来查询确实是性能最高的!

我们再来看以下 SQL 会使用哪个索引

SELECT * FROM person WHERE NAME >'name84059' AND create_time>'2020-05-23 14:39:18' 

图片

用了全表扫描!理论上应该用 name_score 或者 create_time 索引才对,从 WHERE 的查询条件来看确实都能命中索引,那是否是使用 SELECT * 造成的回表代价太大所致呢,我们改成覆盖索引的形式试一下

SELECT create_time FROM person WHERE NAME >'name84059' AND create_time > '2020-05-23 14:39:18' 

结果 MySQL 依然选择了全表扫描!这就比较有意思了,理论上采用了覆盖索引的方式进行查找性能肯定是比全表扫描更好的,为啥 MySQL 选择了全表扫描呢,既然它认为全表扫描比使用覆盖索引的形式性能更好,那我们分别用这两者执行来比较下查询时间吧

-- 全表扫描执行时间: 4.0 ms
SELECT create_time FROM person WHERE NAME >'name84059' AND create_time>'2020-05-23 14:39:18' 

-- 使用覆盖索引执行时间: 2.0 ms
SELECT create_time FROM person force index(create_time) WHERE NAME >'name84059' AND create_time>'2020-05-23 14:39:18' 

从实际执行的效果看使用覆盖索引查询比使用全表扫描执行的时间快了一倍!说明 MySQL 在查询前做的成本估算不准!我们先来看看 MySQL 做全表扫描的成本有多少。

前面我们说了成本主要 IO 成本和 CPU 成本有关,对于全表扫描来说也就是分别和聚簇索引占用的页面数和表中的记录数。执行以下命令

SHOW TABLE STATUS LIKE 'person'

图片

可以发现

  1. 行数是 100264,我们不是插入了 10 w 行的数据了吗,怎么算出的数据反而多了,其实这里的计算是估算,也有可能这里的行数统计出来比 10 w 少了,估算方式有兴趣大家去网上查找,这里不是本文重点,就不展开了。得知行数,那我们知道 CPU 成本是 100264 * 0.2 = 20052.8。
  2. 数据长度是 5783552,InnoDB 每个页面的大小是 16 KB,可以算出页面数量是 353。

也就是说全表扫描的成本是 20052.8 + 353 = 20406。

这个结果对不对呢,我们可以用一个工具验证一下。在 MySQL 5.6 及之后的版本中,我们可以用 optimizer trace 功能来查看优化器生成计划的整个过程 ,它列出了选择每个索引的执行计划成本以及最终的选择结果,我们可以依赖这些信息来进一步优化我们的 SQL。

optimizer_trace 功能使用如下

SET optimizer_trace="enabled=on";
SELECT create_time FROM person WHERE NAME >'name84059' AND create_time > '2020-05-23 14:39:18';
SELECT * FROM information_schema.OPTIMIZER_TRACE;
SET optimizer_trace="enabled=off";

执行之后我们主要观察使用 name_score,create_time 索引及全表扫描的成本。

先来看下使用 name_score 索引执行的的预估执行成本:

{
    "index": "name_score",
    "ranges": [
      "name84059 <= name"
    ],
    "index_dives_for_eq_ranges": true,
    "rows": 25372,
    "cost": 30447
}

可以看到执行成本为 30447,高于我们之前算出来的全表扫描成本:20406。所以没选择此索引执行

注意:这里的 30447 是查询二级索引的 IO 成本和 CPU 成本之和,再加上回表查询聚簇索引的 IO 成本和 CPU 成本之和。

再来看下使用 create_time 索引执行的的预估执行成本:

{
    "index": "create_time",
    "ranges": [
      "0x5ec8c516 < create_time"
    ],
    "index_dives_for_eq_ranges": true,
    "rows": 50132,
    "cost": 60159,
    "cause": "cost"
}

可以看到成本是 60159,远大于全表扫描成本 20406,自然也没选择此索引。

再来看计算出的全表扫描成本:

{
    "considered_execution_plans": [
      {
        "plan_prefix": [
        ],
        "table": "`person`",
        "best_access_path": {
          "considered_access_paths": [
            {
              "rows_to_scan": 100264,
              "access_type": "scan",
              "resulting_rows": 100264,
              "cost": 20406,
              "chosen": true
            }
          ]
        },
        "condition_filtering_pct": 100,
        "rows_for_plan": 100264,
        "cost_for_plan": 20406,
        "chosen": true
      }
    ]
}

注意看 cost:20406,与我们之前算出来的完全一样!这个值在以上三者算出的执行成本中最小,所以最终 MySQL 选择了用全表扫描的方式来执行此 SQL。

实际上 optimizer trace 详细列出了覆盖索引,回表的成本统计情况,有兴趣的可以去研究一下。

从以上分析可以看出, MySQL 选择的执行计划未必是最佳的,原因有挺多,就比如上文说的行数统计信息不准,再比如 MySQL 认为的最优跟我们认为不一样,我们可以认为执行时间短的是最优的,但 MySQL 认为的成本小未必意味着执行时间短。

总结

本文通过一个例子深入剖析了 MySQL 的执行计划是如何选择的,以及为什么它的选择未必是我们认为的最优的,这也提醒我们,在生产中如果有多个索引的情况,使用 WHERE 进行过滤未必会选中你认为的索引,我们可以提前使用 EXPLAIN, optimizer trace 来优化我们的查询语句。

最后给大家分享一个Github仓库,上面有大彬整理的300多本经典的计算机书籍PDF,包括C语言、C++、Java、Python、前端、数据库、操作系统、计算机网络、数据结构和算法、机器学习、编程人生等,可以star一下,下次找书直接在上面搜索,仓库持续更新中~

Github地址https://github.com/Tyson0314/java-books

相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。 &nbsp; 相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情:&nbsp;https://www.aliyun.com/product/rds/mysql&nbsp;
相关文章
|
Java 调度 Spring
SpringBoot实现多线程定时任务动态定时任务配置文件配置定时任务
SpringBoot实现多线程定时任务动态定时任务配置文件配置定时任务
1308 0
|
负载均衡 Java API
深入了解Spring Cloud Netflix:构建微服务架构的利器
在当今快速发展的软件开发领域,微服务架构已经成为了构建高度可伸缩、灵活性强的应用程序的首选方式。然而,微服务架构也带来了一系列的挑战,包括服务发现、负载均衡、容错处理、配置管理等问题。Spring Cloud Netflix是一组用于构建分布式系统的开源工具,它基于Netflix的一些开源项目,为开发人员提供了强大的解决方案,帮助他们轻松地构建和管理微服务应用程序。本文将深入介绍Spring Cloud Netflix的主要组件以及它们如何帮助开发人员构建稳健的微服务架构。
|
大数据 数据管理 Docker
【Datahub系列教程】Datahub入门必学——DatahubCLI之Docker命令详解
【Datahub系列教程】Datahub入门必学——DatahubCLI之Docker命令详解
1108 0
|
SQL 关系型数据库 MySQL
ShardingSphere-Sharding-Proxy(安装和分表配置)| 学习笔记
快速学习ShardingSphere-Sharding-Proxy(安装和分表配置)。
ShardingSphere-Sharding-Proxy(安装和分表配置)| 学习笔记
|
JavaScript 数据管理 虚拟化
ArkTS List组件基础:掌握列表渲染与动态数据管理
在HarmonyOS应用开发中,ArkTS的List组件是构建动态列表视图的核心。本文深入探讨了List组件的基础,包括数据展示、性能优化和用户交互,以及如何在实际开发中应用这些知识,提升开发效率和应用性能。通过定义数据源、渲染列表项和动态数据管理,结合虚拟化列表和条件渲染等技术,帮助开发者构建高效、响应式的用户界面。
1024 2
|
JSON Java 数据格式
java调用服务报错415 Content type ‘application/octet-stream‘ not supported
java调用服务报错415 Content type ‘application/octet-stream‘ not supported
604 1
|
XML 设计模式 JavaScript
如何在页面中监听“不存在”的 DOM 节点
本文将介绍 MutationObserver 的基本原理、使用方法和应用场景,帮助读者更好地理解和应用这个灵活且强大的 API。
|
存储 SQL 关系型数据库
MySQL分库分表,何时分?怎么分?
MySQL分库分表,何时分?怎么分?
1428 0
MySQL分库分表,何时分?怎么分?
|
监控 网络架构
掌握网络设计:子网划分详解
【4月更文挑战第22天】
1392 0
|
网络协议 Linux 应用服务中间件
不要在linux上启用net.ipv4.tcp_tw_recycle参数
不要在linux上启用net.ipv4.tcp_tw_recycle参数 发布于 2015/07/27 莿鸟栖草堂 本文为翻译英文BLOG《Coping with the TCP TIME-WAIT state on busy Linux servers》,但并非完整的翻译,译者CFC4N对原文理解后,进行了调整,增加了相关论点论据,跟原文稍有不同。
3921 1

热门文章

最新文章