LeetCode宝石与石头使用JavaScript解题|前端学算法

简介: LeetCode宝石与石头使用JavaScript解题|前端学算法

宝石与石头


给你一个字符串 jewels 代表石头中宝石的类型,另有一个字符串 stones 代表你拥有的石头。 stones 中每个字符代表了一种你拥有的石头的类型,你想知道你拥有的石头中有多少是宝石。

字母区分大小写,因此 "a""A" 是不同类型的石头。

示例 1:

输入: jewels = "aA", stones = "aAAbbbb"

输出: 3

示例 2:

输入: jewels = "z", stones = "ZZ"

输出: 0


解题思路


暴力破解:我们可以把宝石jewels转化为数组,看看有几种类型的宝石;再把石头转化为数组,然后 采用双重循环挨个进行判断是不是属于宝石;但是这种方法费时费力

优化一下我们可以使用筛选这个api,先把石头转化为数组,然后筛选属于宝石的部分,最后得出一个数组,这个数组就是宝石的个数

其实只需要一行代码就能搞定,为了方便阅读,还是写两行吧

具体步骤如下:

  • 第一步:把石头转化为数组,进行筛选
  • 第二步: 如果当前元素属于宝石,那么就是我们需要的元素,最后的结果会返回一个数组
  • 第三步: 返回结果的长度;
var numJewelsInStones = function(jewels, stones) {
    let result = stones.split('').filter(item=> jewels.includes(item))
    return result.length
};


image.png


知识点


  • split():于把一个字符串按照要求分割成字符串数组
  • filter() 方法创建数组,其中填充了所有通过测试的数组元素;它不会改变原始数组。而是返回一个新数组

明出处。

目录
相关文章
|
5月前
|
搜索推荐 前端开发 数据可视化
【优秀python web毕设案例】基于协同过滤算法的酒店推荐系统,django框架+bootstrap前端+echarts可视化,有后台有爬虫
本文介绍了一个基于Django框架、协同过滤算法、ECharts数据可视化以及Bootstrap前端技术的酒店推荐系统,该系统通过用户行为分析和推荐算法优化,提供个性化的酒店推荐和直观的数据展示,以提升用户体验。
197 1
【优秀python web毕设案例】基于协同过滤算法的酒店推荐系统,django框架+bootstrap前端+echarts可视化,有后台有爬虫
|
22天前
|
机器学习/深度学习 前端开发 算法
婚恋交友系统平台 相亲交友平台系统 婚恋交友系统APP 婚恋系统源码 婚恋交友平台开发流程 婚恋交友系统架构设计 婚恋交友系统前端/后端开发 婚恋交友系统匹配推荐算法优化
婚恋交友系统平台通过线上互动帮助单身男女找到合适伴侣,提供用户注册、个人资料填写、匹配推荐、实时聊天、社区互动等功能。开发流程包括需求分析、技术选型、系统架构设计、功能实现、测试优化和上线运维。匹配推荐算法优化是核心,通过用户行为数据分析和机器学习提高匹配准确性。
69 3
|
5月前
|
Python
【Leetcode刷题Python】1049. 最后一块石头的重量 II
LeetCode 1049题 "最后一块石头的重量 II" 的Python解决方案,通过动态规划算法计算使最后一块石头的重量最小的方案。
45 1
|
1月前
|
机器学习/深度学习 算法 数据安全/隐私保护
基于深度学习网络的宝石类型识别算法matlab仿真
本项目利用GoogLeNet深度学习网络进行宝石类型识别,实验包括收集多类宝石图像数据集并按7:1:2比例划分。使用Matlab2022a实现算法,提供含中文注释的完整代码及操作视频。GoogLeNet通过其独特的Inception模块,结合数据增强、学习率调整和正则化等优化手段,有效提升了宝石识别的准确性和效率。
|
3月前
|
移动开发 算法 前端开发
前端常用算法全解:特征梳理、复杂度比较、分类解读与示例展示
前端常用算法全解:特征梳理、复杂度比较、分类解读与示例展示
41 0
|
4月前
|
算法 前端开发 机器人
一文了解分而治之和动态规则算法在前端中的应用
该文章详细介绍了分而治之策略和动态规划算法在前端开发中的应用,并通过具体的例子和LeetCode题目解析来说明这两种算法的特点及使用场景。
一文了解分而治之和动态规则算法在前端中的应用
|
3月前
|
算法 Java 程序员
【算法每日一练及解题思路】有n级台阶,一次只能上1级或2级,共有多少种走法?
本文深入解析了“爬楼梯问题”,探讨了递归与迭代两种解法,并提供了Java代码实现。通过分析问题本质,帮助读者理解动态规划技巧,提高解决实际编程问题的能力。关键词:Java, 算法, 动态规划, 爬楼梯问题, 递归, 迭代。
134 0
|
3月前
|
算法 C++
【算法解题思想】动态规划+深度优先搜索(C/C++)
【算法解题思想】动态规划+深度优先搜索(C/C++)
|
5月前
|
搜索推荐 前端开发 算法
基于用户画像及协同过滤算法的音乐推荐系统,采用Django框架、bootstrap前端,MySQL数据库
本文介绍了一个基于用户画像和协同过滤算法的音乐推荐系统,使用Django框架、Bootstrap前端和MySQL数据库构建,旨在为用户提供个性化的音乐推荐服务,提高推荐准确性和用户满意度。
376 7
基于用户画像及协同过滤算法的音乐推荐系统,采用Django框架、bootstrap前端,MySQL数据库
|
4月前
|
算法 前端开发
一文了解贪心算法和回溯算法在前端中的应用
该文章深入讲解了贪心算法与回溯算法的原理及其在前端开发中的具体应用,并通过分析LeetCode题目来展示这两种算法的解题思路与实现方法。
下一篇
开通oss服务