微电网两阶段鲁棒优化经济调度方法[2](Matlab代码实现)

简介: 微电网两阶段鲁棒优化经济调度方法[2](Matlab代码实现)

   💥💥💥💞💞💞欢迎来到本博客❤️❤️❤️💥💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

目录

💥1 文献来源

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码实现


💥1 文献来源

image.gif

摘要:针对微电网内可再生能源和负荷的不确定性,建立了min-max-min 结构的两阶段鲁棒优化模型,可得到最恶劣场景下运行成本最低的调度方案。模型中考虑了储能、需求侧负荷及可控分布式电源等的运行约束和协调控制,并引入了不确定性调节参数,可灵活调整调度方案的保守性。基于列约束生成算法和强对偶理论,可将原问题分解为具有混合整数线性特征的主问题和子问题进行交替求解,从而得到原问题的最优解。最终通过仿真分析验证了所建模型和求解算法的有效性,同时给出了分时电价机制下微电网对储能进行调度的边界条件,可为微电网投资商规划储能及配电网运营商设计激励机制提供参考。

image.gif

图1所示为典型的微电网结构,由可控分布式电源、可再生分布式电源、储能及本地负荷集成而成。此外,考虑微电网内包含需求响应负荷的情况,微电网可通过灵活调整需求响应负荷的用电计划,降低运行成本。同时,需求响应负荷也能通过提供该服务获取一定的收益。

📚2 运行结果

上次是初级版本:

微电网两阶段鲁棒优化经济调度方法(Matlab代码实现)

本次想法:

考虑不确定量。这里为确定量为最恶劣场景(子问题的解)   求解的应该是最恶劣条件下 电网的调度及出力情况  但是这个最恶劣的条件可以是攻击者、也可以是分布式能源出力和负荷的最恶劣的情况, 按照这个思路,其实你可以衍生出好多idea,风险防御的角度。

image.gif

image.gif

image.gif

image.gif

image.gif

image.gif

image.gif

本文基于两阶段鲁棒优化方法建立了考虑微电网内可再生分布式电源和负荷不确定性的经济调度模型,分析结果表明:

1)所提出的模型考虑了可再生分布式电源和负荷的不确定性,通过对两阶段鲁棒优化模型的求解,微电网能够得到“最恶劣”场景下系统运行成本最小的调度方案;

2)通过改变不确定性调节参数,能够灵活调整微电网优化方案的保守性,有利于微电网调度员在运行成本和运行风险间进行合理选择;

3)鲁棒优化方法相对于确定性优化方法的优势随着预测误差的增大而更加显著,得到的日前调度方案具备更强的鲁棒性和抵御实时市场电价波动风险的能力;

4)分时电价机制下,微电网对储能的调度计划取决于峰谷电价差和储能单位充放电成本之间的关系,该结论可为微电网投资商在规划储能时提供参考,同时也有助于配电网运营商设计合理的激励机制。

🎉3 参考文献

[1]刘一欣,郭力,王成山.微电网两阶段鲁棒优化经济调度方法[J].中国电机工程学报,2018,38(14):4013-4022+4307.DOI:10.13334/j.0258-8013.pcsee.170500.

🌈4 Matlab代码实现

链接:https://pan.baidu.com/s/1VvDg87lXjsv8JJVamMa__A
提取码:mfl0
--来自百度网盘超级会员V3的分享

相关文章
|
2月前
|
算法 调度
基于遗传模拟退火混合优化算法的车间作业最优调度matlab仿真,输出甘特图
车间作业调度问题(JSSP)通过遗传算法(GA)和模拟退火算法(SA)优化多个作业在并行工作中心上的加工顺序和时间,以最小化总完成时间和机器闲置时间。MATLAB2022a版本运行测试,展示了有效性和可行性。核心程序采用作业列表表示法,结合遗传操作和模拟退火过程,提高算法性能。
|
3月前
|
算法 调度
基于CVX凸优化的电动汽车充放电调度matlab仿真
本程序基于CVX凸优化实现电动汽车充放电调度,通过全局和局部优化求解,展示了不同情况下的负载曲线。程序在MATLAB 2022a上运行,有效平抑电网负荷峰值,提高电网稳定性。
|
5月前
|
存储 算法 调度
基于和声搜索算法(Harmony Search,HS)的机器设备工作最优调度方案求解matlab仿真
通过和声搜索算法(HS)实现多机器并行工作调度,以最小化任务完成时间。在MATLAB2022a环境下,不仅输出了工作调度甘特图,还展示了算法适应度值的收敛曲线。HS算法模拟音乐家即兴创作过程,随机生成初始解(和声库),并通过选择、微调生成新解,不断迭代直至获得最优调度方案。参数包括和声库大小、记忆考虑率、音调微调率及带宽。编码策略将任务与设备分配映射为和声,目标是最小化完成时间,同时确保满足各种约束条件。
|
6月前
|
算法 网络性能优化 调度
基于De-Jitter Buffer算法的无线网络业务调度matlab仿真,对比RR调度算法
1. **功能描述**: 提出了一个去抖动缓冲区感知调度器,结合用户终端的缓冲状态减少服务中断。该算法通过动态调整数据包发送速率以优化网络延迟和吞吐量。 2. **测试结果**: 使用MATLAB 2022a进行了仿真测试,结果显示De-Jitter Buffer算法在网络拥塞时比RR调度算法更能有效利用资源,减少延迟,并能根据网络状态动态调整发送速率。 3. **核心程序**: MATLAB代码实现了调度逻辑,包括排序、流量更新、超时和中断处理等功能。 仿真结果和算法原理验证了De-Jitter Buffer算法在无线网络调度中的优势。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
259 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
154 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
127 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
|
8月前
|
数据安全/隐私保护
耐震时程曲线,matlab代码,自定义反应谱与地震波,优化源代码,地震波耐震时程曲线
地震波格式转换、时程转换、峰值调整、规范反应谱、计算反应谱、计算持时、生成人工波、时频域转换、数据滤波、基线校正、Arias截波、傅里叶变换、耐震时程曲线、脉冲波合成与提取、三联反应谱、地震动参数、延性反应谱、地震波缩尺、功率谱密度
基于混合整数规划的微网储能电池容量规划(matlab代码)
基于混合整数规划的微网储能电池容量规划(matlab代码)
|
8月前
|
算法 调度
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)
含多微网租赁共享储能的配电网博弈优化调度(含matlab代码)

热门文章

最新文章