力扣(LeetCode)算法题解:1528. 重新排列字符串

简介: 力扣(LeetCode)算法题解:1528. 重新排列字符串

(一)题目描述

给你一个字符串 s 和一个 长度相同 的整数数组 indices 。

请你重新排列字符串 s ,其中第 i 个字符需要移动到 indices[i] 指示的位置。

返回重新排列后的字符串。

来源:力扣(LeetCode

链接:https://leetcode-cn.com/problems/shuffle-string

著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

(二)输入、输出示例

示例 1:

输入:s = "codeleet", indices = [4,5,6,7,0,2,1,3]
输出:"leetcode"
解释:如图所示,"codeleet" 重新排列后变为 "leetcode" 。


示例 2:

输入:s = "abc", indices = [0,1,2]
输出:"abc"
解释:重新排列后,每个字符都还留在原来的位置上。

示例 3:

输入:s = "aiohn", indices = [3,1,4,2,0]
输出:"nihao"
• 1
• 2

示例 4:

输入:s = "aaiougrt", indices = [4,0,2,6,7,3,1,5]
输出:"arigatou"

示例 5:

输入:s = "art", indices = [1,0,2]
输出:"rat"

三)代码实现

方法1(php版):

解题思路

以示例1为例分析:

s = "codeleet", indices = [4,5,6,7,0,2,1,3]

s中的0号元素c,应该放在indices中0元素的位置[key=4]

s中的1号元素o,应该放在indices中1元素的位置[key=6]

s中的2号元素d,应该放在indices中2元素的位置[key=5]

s中的3号元素e,应该放在indices中3元素的位置[key=7]

s中的4号元素l,应该放在indices中4元素的位置[key=0]

s中的5号元素e,应该放在indices中5元素的位置[key=1]

s中的6号元素e,应该放在indices中6元素的位置[key=2]

s中的7号元素t,应该放在indices中7元素的位置[key=3]

逆着来:

indices[key=0]的元素是4,应该找s中的4号元素l

indices[key=1]的元素是5,应该找s中的5号元素e

indices[key=2]的元素是6,应该找s中的6号元素e

indices[key=3]的元素是7,应该找s中的7号元素t

indices[key=4]的元素是0,应该找s中的0号元素c

indices[key=5]的元素是2,应该找s中的2号元素d

indices[key=6]的元素是1,应该找s中的1号元素o

indices[key=7]的元素是3,应该找s中的3号元素e


注:indices变量是已经排好序的数组。

伪代码描述:indices[v] = s[k]

代码实现

class Solution {
    /**
     * @param String $s
     * @param Integer[] $indices
     * @return String
     */
    function restoreString($s, $indices) {
        $arr = str_split($s);
        foreach ($indices as $k => $v){
            $indices[$v] = $arr[$k];
        }
        $s = join("", $indices);
        return $s;
    }
}

(四)性能分析

运行时间 内存消耗
28ms 14.8 MB
目录
相关文章
|
3月前
|
Go
【LeetCode 热题100】DP 实战进阶:最长递增子序列、乘积最大子数组、分割等和子集(力扣300 / 152/ 416 )(Go语言版)
本文深入解析三道经典的动态规划问题:**最长递增子序列(LIS)**、**乘积最大子数组** 和 **分割等和子集**。 - **300. LIS** 通过 `dp[i]` 表示以第 `i` 个元素结尾的最长递增子序列长度,支持 O(n²) 动态规划与 O(n log n) 的二分优化。 - **152. 乘积最大子数组** 利用正负数特性,同时维护最大值与最小值的状态转移方程。 - **416. 分割等和子集** 转化为 0-1 背包问题,通过布尔型 DP 实现子集和判断。 总结对比了三题的状态定义与解法技巧,并延伸至相关变种问题,助你掌握动态规划的核心思想与灵活应用!
136 1
|
3月前
|
分布式计算 算法 Go
【LeetCode 热题100】BFS/DFS 实战:岛屿数量 & 腐烂的橘子(力扣200 / 994 )(Go语言版)
本文讲解了两道经典的图论问题:**岛屿数量(LeetCode 200)** 和 **腐烂的橘子(LeetCode 994)**,分别通过 DFS/BFS 实现。在“岛屿数量”中,利用深度或广度优先搜索遍历二维网格,标记连通陆地并计数;“腐烂的橘子”则采用多源 BFS,模拟腐烂传播过程,计算最短时间。两者均需掌握访问标记技巧,是学习网格搜索算法的绝佳实践。
141 1
|
4月前
|
Go 开发者 索引
【LeetCode 热题100】路径与祖先:二叉树中的深度追踪技巧(力扣33 / 81/ 153/154)(Go语言版)
本文深入探讨了LeetCode中四道关于「搜索旋转排序数组」的经典题目,涵盖了无重复和有重复元素的情况。通过二分查找的变形应用,文章详细解析了每道题的解题思路和Go语言实现代码。关键点包括判断有序区间、处理重复元素以及如何缩小搜索范围。文章还总结了各题的异同,并推荐了类似题目,帮助读者全面掌握二分查找在旋转数组中的应用。无论是初学者还是有经验的开发者,都能从中获得实用的解题技巧和代码实现方法。
254 14
|
3月前
|
Go
【LeetCode 热题100】BFS/DFS 实战:岛屿数量 & 腐烂的橘子(力扣200 / 994 )(Go语言版)
本篇博客详细解析了三道经典的动态规划问题:198. 打家劫舍(线性状态转移)、279. 完全平方数与322. 零钱兑换(完全背包问题)。通过 Go 语言实现,帮助读者掌握动态规划的核心思想及其实战技巧。从状态定义到转移方程,逐步剖析每道题的解法,并总结其异同点,助力解决更复杂的 DP 问题。适合初学者深入理解动态规划的应用场景和优化方法。
85 0
|
3月前
|
算法 Go 索引
【LeetCode 热题100】回溯:括号生成 & 组合总和(力扣22 / 39 )(Go语言版)
本文深入解析了LeetCode上的两道经典回溯算法题:**22. 括号生成**与**39. 组合总和**。括号生成通过维护左右括号数量,确保路径合法并构造有效组合;组合总和则允许元素重复选择,利用剪枝优化搜索空间以找到所有满足目标和的组合。两者均需明确路径、选择列表及结束条件,同时合理运用剪枝策略提升效率。文章附有Go语言实现代码,助你掌握回溯算法的核心思想。
104 0
|
5月前
|
Go
【LeetCode 热题100】路径与祖先:二叉树中的深度追踪技巧(力扣437 / 236 )(Go语言版)
本文深入探讨二叉树中路径与祖先问题,涵盖两道经典题目:LeetCode 437(路径总和 III)和236(最近公共祖先)。对于路径总和 III,文章分析了双递归暴力解法与前缀和优化方法,后者通过哈希表记录路径和,将时间复杂度从O(n²)降至O(n)。在最近公共祖先问题中,采用后序遍历递归查找,利用“自底向上”的思路确定最近公共祖先节点。文中详细解析代码实现与核心要点,帮助读者掌握深度追踪技巧,理解树结构中路径与节点关系的本质。这类问题在面试中高频出现,掌握其解法意义重大。
119 4
|
5月前
|
算法 Go
【LeetCode 热题100】深入理解二叉树结构变化与路径特性(力扣104 / 226 / 114 / 543)(Go语言版)
本博客深入探讨二叉树的深度计算、结构变换与路径分析,涵盖四道经典题目:104(最大深度)、226(翻转二叉树)、114(展开为链表)和543(二叉树直径)。通过递归与遍历策略(前序、后序等),解析每题的核心思路与实现方法。结合代码示例(Go语言),帮助读者掌握二叉树相关算法的精髓。下一讲将聚焦二叉树构造问题,欢迎持续关注!
136 10
|
5月前
|
Go 索引
【LeetCode 热题100】394:字符串解码(详细解析)(Go语言版)
本文详细解析了 LeetCode 热题 394:字符串解码。题目要求对编码字符串如 `k[encoded_string]` 进行解码,其中 `encoded_string` 需重复 `k` 次。文章提供了两种解法:使用栈模拟和递归 DFS,并附有 Go 语言实现代码。栈解法通过数字栈与字符串栈记录状态,适合迭代;递归解法则利用函数调用处理嵌套结构,代码更简洁。两者时间复杂度均为 O(n),但递归需注意栈深度问题。文章还总结了解题注意事项及适用场景,帮助读者更好地掌握字符串嵌套解析技巧。
147 6
|
6月前
|
存储 机器学习/深度学习 缓存
🚀 力扣热题 394:字符串解码(详细解析)(Go语言版)
文章提供了两种解法:栈结构和递归解法。栈解法通过维护数字栈与字符串栈,依次处理 `[` 和 `]`,构造解码结果;递归解法则利用函数调用逐层解析嵌套结构。两者时间复杂度均为 $O(n)$,空间复杂度也为 $O(n)$。栈解法直观易懂,适合初学者;递归解法优雅简洁,适合处理深度嵌套规则。掌握这两种方法,可灵活应对类似问题,提升解题能力。
198 11
|
6天前
|
传感器 机器学习/深度学习 算法
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)