力扣(LeetCode)算法题解:1464. 数组中两元素的最大乘积

简介: 力扣(LeetCode)算法题解:1464. 数组中两元素的最大乘积

(一)题目描述

给你一个整数数组 nums,请你选择数组的两个不同下标 i 和 j,使 (nums[i]-1)*(nums[j]-1) 取得最大值。

请你计算并返回该式的最大值。

来源:力扣(LeetCode

链接:https://leetcode-cn.com/problems/maximum-product-of-two-elements-in-an-array

著作权归领扣网络所有。商业转载请联系官方授权,非商业转载请注明出处。

(二)输入、输出示例

示例 1:

输入:nums = [3,4,5,2]
输出:12 
解释:如果选择下标 i=1 和 j=2(下标从 0 开始),则可以获得最大值,(nums[1]-1)*(nums[2]-1)

示例 2:

输入:nums = [1,5,4,5]
输出:16
解释:选择下标 i=1 和 j=3(下标从 0 开始),则可以获得最大值 (5-1)*(5-1) = 16 。

示例 3:

输入:nums = [3,7]
输出:12
• 1
• 2

(三)代码实现

方法1(php版):

解题思路

1.求(nums[i]-1)×(nums[j]-1) 的最大值。实际就是求nums[i]和nums[j]的最大值。

2.降序排列,取下标为0和1的元素,即为最大值与次大值。

3.代入公式计算值。

代码实现

class Solution {
    /**
     * @param Integer[] $nums
     * @return Integer
     */
    function maxProduct($nums) {
        rsort($nums);
        return (($nums[0]-1) * ($nums[1]-1));
    }
}


(四)性能分析

运行时间 内存消耗
20ms 14.9 MB
目录
相关文章
|
3月前
|
Go
【LeetCode 热题100】DP 实战进阶:最长递增子序列、乘积最大子数组、分割等和子集(力扣300 / 152/ 416 )(Go语言版)
本文深入解析三道经典的动态规划问题:**最长递增子序列(LIS)**、**乘积最大子数组** 和 **分割等和子集**。 - **300. LIS** 通过 `dp[i]` 表示以第 `i` 个元素结尾的最长递增子序列长度,支持 O(n²) 动态规划与 O(n log n) 的二分优化。 - **152. 乘积最大子数组** 利用正负数特性,同时维护最大值与最小值的状态转移方程。 - **416. 分割等和子集** 转化为 0-1 背包问题,通过布尔型 DP 实现子集和判断。 总结对比了三题的状态定义与解法技巧,并延伸至相关变种问题,助你掌握动态规划的核心思想与灵活应用!
136 1
|
9月前
|
算法 容器
【算法】——双指针算法合集(力扣)
移动零,复写零,快乐数,盛最多水的容器,有效三角形的个数,和为s的两个数(查找总价格为目标值的两个商品 ),三数之和,四数之和
|
10月前
|
存储 算法 Java
leetcode算法题-有效的括号(简单)
【11月更文挑战第5天】本文介绍了 LeetCode 上“有效的括号”这道题的解法。题目要求判断一个只包含括号字符的字符串是否有效。有效字符串需满足左括号必须用相同类型的右括号闭合,并且左括号必须以正确的顺序闭合。解题思路是使用栈数据结构,遍历字符串时将左括号压入栈中,遇到右括号时检查栈顶元素是否匹配。最后根据栈是否为空来判断字符串中的括号是否有效。示例代码包括 Python 和 Java 版本。
210 4
|
11月前
|
算法
每日一道算法题(Leetcode 20)
每日一道算法题(Leetcode 20)
110 2
|
11月前
|
算法
【链表】算法题(二) ----- 力扣/牛客
【链表】算法题(二) ----- 力扣/牛客
|
11月前
|
算法 数据挖掘
【栈和队列】算法题 ---- 力扣(二)
【栈和队列】算法题 ---- 力扣
|
11月前
|
存储 算法
【栈和队列】算法题 ---- 力扣(一)
【栈和队列】算法题 ---- 力扣
|
6天前
|
传感器 机器学习/深度学习 算法
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
【使用 DSP 滤波器加速速度和位移】使用信号处理算法过滤加速度数据并将其转换为速度和位移研究(Matlab代码实现)
|
7天前
|
传感器 算法 数据挖掘
基于协方差交叉(CI)的多传感器融合算法matlab仿真,对比单传感器和SCC融合
基于协方差交叉(CI)的多传感器融合算法,通过MATLAB仿真对比单传感器、SCC与CI融合在位置/速度估计误差(RMSE)及等概率椭圆上的性能。采用MATLAB2022A实现,结果表明CI融合在未知相关性下仍具鲁棒性,有效降低估计误差。
|
9天前
|
负载均衡 算法 调度
基于遗传算法的新的异构分布式系统任务调度算法研究(Matlab代码实现)
基于遗传算法的新的异构分布式系统任务调度算法研究(Matlab代码实现)
79 11

热门文章

最新文章