高级神经网络Keras+CNN-GRU-Attention负荷预测(Python代码实现)

简介: 高级神经网络Keras+CNN-GRU-Attention负荷预测(Python代码实现)

 目录

1 高级神经网络Keras知识点讲解及入门算例

2  CNN-GRU-Attention负荷预测

2.1 Python代码实现

2.2 运行结果

3 高级神经网络Keras+CNN-GRU-Attention负荷预测(Python代码+数据)


1 高级神经网络Keras知识点讲解及入门算例

【数学建模】“华为杯”高级神经网络Keras(Python代码实现)

2  CNN-GRU-Attention负荷预测

2.1 Python代码实现

部分代码:

# 分为输入输出,将前一采样点的天气因素和电力负荷作为输入,后一采样点的作为输出标签

train_X, train_y = train[:, :-1], train[:, -1]

val_X, val_y = val[:, :-1], val[:, -1]

test_X, test_y = test[:, :-1], test[:, -1]

# print(train_X.shape[1])

# 重塑成3D形状 [样例, 时间步, 特征],该3D形状为循环神经网络的固定要求的输出维度要求

train_X = train_X.reshape((train_X.shape[0], 1, train_X.shape[1]))

val_X = val_X.reshape((val_X.shape[0], 1, val_X.shape[1]))

test_X = test_X.reshape((test_X.shape[0], 1, test_X.shape[1]))

# print(train_X)

# window_size设置窗口大小为1,可以理解为时间步为1,特征数为7

window_size = 1

fea_num = 7

# 按照keras的要求搭建神经网络

model = keras.Sequential()

# 设置输入数据的大小

model.add(Input((window_size, fea_num)))

model.add(Reshape((window_size, fea_num, 1)))

model.add(Conv2D(filters=32, kernel_size=3, strides=1, padding="same", activation="relu"))

model.add(MaxPooling2D(pool_size=2, strides=1, padding="same"))

model.add(Dropout(0.3))

model.add(Reshape((window_size, -1)))

model.add(GRU(10, return_sequences=True))

model.add(GRU(20, return_sequences=True))

model.add(Attention(50))

model.add(Dense(10, activation="relu"))

model.add(Dense(1))

print(model.summary())

# 对网络进行编译,选择计算误差的函数,优化器。

model.compile(loss='mse', optimizer='adam', metrics=['mse'])

# 拟合网络,对模型进行50轮的训练,每个批次512个数据,将验证数据集输入网络进行验证。

history = model.fit(train_X, train_y, epochs=50, batch_size=512, verbose=2, validation_data=(val_X, val_y))

model.save('CNN-LSTM-Attention.h5')

# 训练完了以后利用训练好的模型作出预测

yhat = model.predict(test_X)

数据:

2.2 运行结果

image.gif

image.gif

image.gif

image.gif

3 高级神经网络Keras+CNN-GRU-Attention负荷预测(Python代码+数据)

链接:https://pan.baidu.com/s/1rE5xcvUBOtVDNFrNcJcXqg 

提取码:jntx

--来自百度网盘超级会员V3的分享


相关文章
|
23天前
|
Python
课程设计项目之基于Python实现围棋游戏代码
游戏进去默认为九路玩法,当然也可以选择十三路或是十九路玩法 使用pycharam打开项目,pip安装模块并引用,然后运行即可, 代码每行都有详细的注释,可以做课程设计或者毕业设计项目参考
62 33
|
14天前
|
机器学习/深度学习 算法 计算机视觉
基于CNN卷积神经网络的金融数据预测matlab仿真,对比BP,RBF,LSTM
本项目基于MATLAB2022A,利用CNN卷积神经网络对金融数据进行预测,并与BP、RBF和LSTM网络对比。核心程序通过处理历史价格数据,训练并测试各模型,展示预测结果及误差分析。CNN通过卷积层捕捉局部特征,BP网络学习非线性映射,RBF网络进行局部逼近,LSTM解决长序列预测中的梯度问题。实验结果表明各模型在金融数据预测中的表现差异。
|
24天前
|
JavaScript API C#
【Azure Developer】Python代码调用Graph API将外部用户添加到组,结果无效,也无错误信息
根据Graph API文档,在单个请求中将多个成员添加到组时,Python代码示例中的`members@odata.bind`被错误写为`members@odata_bind`,导致用户未成功添加。
44 10
|
1月前
|
数据可视化 Python
以下是一些常用的图表类型及其Python代码示例,使用Matplotlib和Seaborn库。
通过这些思维导图和分析说明表,您可以更直观地理解和选择适合的数据可视化图表类型,帮助更有效地展示和分析数据。
84 8
|
1月前
|
Python
探索Python中的装饰器:简化代码,增强功能
在Python的世界里,装饰器就像是给函数穿上了一件神奇的外套,让它们拥有了超能力。本文将通过浅显易懂的语言和生动的比喻,带你了解装饰器的基本概念、使用方法以及它们如何让你的代码变得更加简洁高效。让我们一起揭开装饰器的神秘面纱,看看它是如何在不改变函数核心逻辑的情况下,为函数增添新功能的吧!
|
1月前
|
机器学习/深度学习 人工智能 自然语言处理
深入理解深度学习中的卷积神经网络(CNN)##
在当今的人工智能领域,深度学习已成为推动技术革新的核心力量之一。其中,卷积神经网络(CNN)作为深度学习的一个重要分支,因其在图像和视频处理方面的卓越性能而备受关注。本文旨在深入探讨CNN的基本原理、结构及其在实际应用中的表现,为读者提供一个全面了解CNN的窗口。 ##
|
1月前
|
人工智能 数据可视化 数据挖掘
探索Python编程:从基础到高级
在这篇文章中,我们将一起深入探索Python编程的世界。无论你是初学者还是有经验的程序员,都可以从中获得新的知识和技能。我们将从Python的基础语法开始,然后逐步过渡到更复杂的主题,如面向对象编程、异常处理和模块使用。最后,我们将通过一些实际的代码示例,来展示如何应用这些知识解决实际问题。让我们一起开启Python编程的旅程吧!
|
1月前
|
存储 数据采集 人工智能
Python编程入门:从零基础到实战应用
本文是一篇面向初学者的Python编程教程,旨在帮助读者从零开始学习Python编程语言。文章首先介绍了Python的基本概念和特点,然后通过一个简单的例子展示了如何编写Python代码。接下来,文章详细介绍了Python的数据类型、变量、运算符、控制结构、函数等基本语法知识。最后,文章通过一个实战项目——制作一个简单的计算器程序,帮助读者巩固所学知识并提高编程技能。
|
1月前
|
Unix Linux 程序员
[oeasy]python053_学编程为什么从hello_world_开始
视频介绍了“Hello World”程序的由来及其在编程中的重要性。从贝尔实验室诞生的Unix系统和C语言说起,讲述了“Hello World”作为经典示例的起源和流传过程。文章还探讨了C语言对其他编程语言的影响,以及它在系统编程中的地位。最后总结了“Hello World”、print、小括号和双引号等编程概念的来源。
116 80
|
25天前
|
Python
[oeasy]python055_python编程_容易出现的问题_函数名的重新赋值_print_int
本文介绍了Python编程中容易出现的问题,特别是函数名、类名和模块名的重新赋值。通过具体示例展示了将内建函数(如`print`、`int`、`max`)或模块名(如`os`)重新赋值为其他类型后,会导致原有功能失效。例如,将`print`赋值为整数后,无法再用其输出内容;将`int`赋值为整数后,无法再进行类型转换。重新赋值后,这些名称失去了原有的功能,可能导致程序错误。总结指出,已有的函数名、类名和模块名不适合覆盖赋新值,否则会失去原有功能。如果需要使用类似的变量名,建议采用其他命名方式以避免冲突。
40 14

热门文章

最新文章