X86 vs ARM 架构同台竞技: 生物大数据大规模并行计算(如何将WGS全基因组计算成本降到1美元)

本文涉及的产品
云原生大数据计算服务MaxCompute,500CU*H 100GB 3个月
云原生大数据计算服务 MaxCompute,5000CU*H 100GB 3个月
简介: Sentieon DNAseq 实施的全基因组测序 (WGS) 二级分析流程与行业标准的 BWA-GATK 最佳实践流程结果相匹配,且运行速度提高了 5-20 倍。Sentieon软件安装简单,开箱即用,并且提供了与ARM和x86指令集适配的版本。使30X WGS 数据样本在OCI 实例上的计算成本压缩到每个样本 1 美元以下,处理时间缩短到近一小时。

背景介绍

基因组序列分析是生命科学和医疗保健行业领域的重要组成部分,是众多技术突破的关键。随着生命数字化时代的来临,为了解决大数据带来的速度与费用问题,在云计算平台进行流程的分析及计算是目前较流行的方案。然而大部分用户通常直接采用了未优化的软硬件配置,导致样本分析成本过高。因此,如何在云平台上选择合适的硬件配置,从而平衡计算成本与分析速度,成为了值得探索的问题。

为此,Oracle甲骨文云发布了相应的评测文章,该测试项目使用了OCI提供的最新的 ARM 和 x86计算实例,利用OCI硬件资源分配与优化机制,搭配Sentieon软件进行了一系列的运算耗时和云成本估算的基准测试。旨在为用户实现全基因组二级分析的高效计算和低成本的最佳平衡。

在分析流程上,该项目选择了Sentieon DNAseq(v202112.01)流程作为软件方案。Sentieon DNAseq 作为行业金标准 BWA-GATK 的直接替代品,不仅能提供与 BWA-GATK 流程一致的分析结果,而且灵活性强,运行速度更比GATK 快 5-20 倍。

我们将在本篇文章中详细展示测试细节和深度分析,供生物大数据分析研究人员参考。

测试细节

测试环境

该项目测试工作使用了OCI提供的最新的AMD、ARM 和 Intel处理器。下表为各个云计算实例的配置情况。相比于其他云计算服务平台,OCI的优势之一是允许用户灵活指定所需的CPU线程数,内存数,存储以及输入/输出,从而达到与应用流程的最佳适配和最优的使用成本。

image.png

测试设置

测试的分析流程使用了与行业金标准的BWA-GATK 结果匹配的Sentieon DNAseq流程。该项目对七组 WGS 数据进行了基准测试和成本估算分析,测试结果发现所有数据集的运行时间和计算成本特征都表现相似。因此,测试结果的分析将重点关注其中的两个数据集,分别为 Illumina HiSeq X 和Illumina NovaSeq 系统测出的 30X HG002 数据(无 PCR 样本)。

在参考基因的选择方面,相比于GRCh37版本,GRCh38版本参考基因组可显著提升序列的完整性和准确度,已作为业界标准被广泛采用。因此该项目采用了 GRCh38 作为参考基因(包括primary contigs以及额外的decoy contigs,不含ALT contigs或者HLA基因);Benchmark分析流程以FASTQ 文件作为输入并生成 VCF 输出文件,流程步骤包括比对、排序、重复数据的删除、BQSR 及变异检测。

测试结果

测试项目依据不同的线程数,内存,以及存储资源的申请,创建了共计11个测试实例,具体配置以及计算成本的评估结果如下表所示。

image.png说明:WGS 分析中涉及的其他操作,例如作业执行脚本的设置、输入数据的上传与输出数据的下载等,这些额外步骤所消耗的资源成本将分摊到各个测试实例上(表 2 中的评估数据不包含这部分的资源成本,也不包含生产云计算操作所需的其他资源成本,以及 Sentieon DNAseq 许可证成本)。另外这里额外增加了 0.0171 美元或 0.0457 美元,以对应 500-GB 或 1000-GB 存储系统的每小时资源成本。

测试结果显示,Sentieon DNAseq在OCI的大部分ARM实例上实现了30x WGS的整体分析成本低于1美元,最低在ARM-S实例上处理NovaSeq 30x WGS成本0.9美元。

image.png

资源监控

OCI极佳的资源可调性确保了用户在配置全基因组以及其他分析流程时,可以找到速度与成本的最佳平衡点。同时OCI平台的控制面板也提供了资源监测工具,帮助用户确认所调用的运算资源是否匹配流程所需。如下图所展示的,是在VM.Standard.A1.Flex实例上运行全基因组分析时运算资源的表现。

image.png我们知道在全基因组的二级分析流程中,比对和变异检测步骤主要依赖CPU的运算,而排序以及去重则是I/O需求较重的步骤。由测试结果可知,Sentieon DNAseq 流程工作时,在大部分时间段内的内存利用率均保持 90%左右,CPU 利用率近乎100% ,只有在排序和去重步骤时稍低;这一结果与我们的预期一致。而在 IO 密集的工作阶段,磁盘I/O峰值已达到了 240 MB/s 的硬件限制。由此说明,Sentieon DNAseq流程工作时可充分利用OCI平台提供的所有可用的硬件资源,实现最佳的运行效率。

CPU性能

Sentieon DNAseq 可以通过在多台服务器上利用更多的 vCPU并行运行,以进一步提高分析速度。此外,由结果可观察到尽管 ARM 处理器不支持超线程,但其仍可提供与 x86 相比具有竞争力的性能表现。

内存性能

为了准确地评估生产环境下测试机器的 I/O 能力,该测试项目中保留了 WGS 分析通常需要的所有关键输出文件,其中 NovaSeq 样本生成了大约 90 GB 的结果文件,而 HiSeq 生成了 120 GB 的结果文件。另外,测试发现,当磁盘容量(及相应的吞吐量性能)从 500 GB (240 MB/s) 增加到 1000 GB (480 MB/s) 时,程序 I/O 速度也有所提高。

可扩展性

将“通量”定义为每天能够处理的30x全基因组数据的个数,下图展示了不同实例的通量与所用线程的关系。其中 AMD-X shape 每天可以处理 32 个 30X 数据集,而 ARM-S shape 只能处理 10 个数据集。

同时,该图还展示了 Sentieon DNAseq 程序的可扩展性。由图可知,通量与所用线程成正比,表明 Sentieon DNAseq 扩展性优异,可最大程度地利用可用硬件资源。

image.png结论

  • OCI 提供的最新 ARM 实例能够很好的处理全基因组测序 (WGS) 二级分析类型的计算密集型和I/O 密集型的 HPC任务。此外,凭借 ARM 强大的计算速度和及更低的成本优势,OCI 的 ARM 实例可为用户提供性价比最佳的解决方案, 30X WGS 数据样本的FASTQ-to-VCF 分析,计算成本不到 1 美元。
  • OCI平台可精确调节各项运算资源,可有效减少资源浪费,降低了用户的计算成本。
  • Sentieon DNAseq 实施的全基因组测序 (WGS) 二级分析流程与行业标准的 BWA-GATK 最佳实践流程结果相匹配,且运行速度提高了 5-20 倍。
  • Sentieon软件安装简单,开箱即用,并且提供了与ARM和x86指令集适配的版本。使30X WGS 数据样本在OCI 实例上的计算成本压缩到每个样本 1 美元以下,处理时间缩短到近一小时。

参考信息

Sentieon软件中文网站:https://www.insvast.com/sentieon

相关实践学习
基于MaxCompute的热门话题分析
本实验围绕社交用户发布的文章做了详尽的分析,通过分析能得到用户群体年龄分布,性别分布,地理位置分布,以及热门话题的热度。
SaaS 模式云数据仓库必修课
本课程由阿里云开发者社区和阿里云大数据团队共同出品,是SaaS模式云原生数据仓库领导者MaxCompute核心课程。本课程由阿里云资深产品和技术专家们从概念到方法,从场景到实践,体系化的将阿里巴巴飞天大数据平台10多年的经过验证的方法与实践深入浅出的讲给开发者们。帮助大数据开发者快速了解并掌握SaaS模式的云原生的数据仓库,助力开发者学习了解先进的技术栈,并能在实际业务中敏捷的进行大数据分析,赋能企业业务。 通过本课程可以了解SaaS模式云原生数据仓库领导者MaxCompute核心功能及典型适用场景,可应用MaxCompute实现数仓搭建,快速进行大数据分析。适合大数据工程师、大数据分析师 大量数据需要处理、存储和管理,需要搭建数据仓库?学它! 没有足够人员和经验来运维大数据平台,不想自建IDC买机器,需要免运维的大数据平台?会SQL就等于会大数据?学它! 想知道大数据用得对不对,想用更少的钱得到持续演进的数仓能力?获得极致弹性的计算资源和更好的性能,以及持续保护数据安全的生产环境?学它! 想要获得灵活的分析能力,快速洞察数据规律特征?想要兼得数据湖的灵活性与数据仓库的成长性?学它! 出品人:阿里云大数据产品及研发团队专家 产品 MaxCompute 官网 https://www.aliyun.com/product/odps 
相关文章
|
1月前
|
机器学习/深度学习 自然语言处理 分布式计算
大规模语言模型与生成模型:技术原理、架构与应用
本文深入探讨了大规模语言模型(LLMs)和生成模型的技术原理、经典架构及应用。介绍了LLMs的关键特点,如海量数据训练、深层架构和自监督学习,以及常见模型如GPT、BERT和T5。同时,文章详细解析了生成模型的工作原理,包括自回归模型、自编码器和GANs,并讨论了这些模型在自然语言生成、机器翻译、对话系统和数据增强等领域的应用。最后,文章展望了未来的发展趋势,如模型压缩、跨模态生成和多语言多任务学习。
143 3
|
1月前
|
大数据
【赵渝强老师】大数据主从架构的单点故障
大数据体系架构中,核心组件采用主从架构,存在单点故障问题。为提高系统可用性,需实现高可用(HA)架构,通常借助ZooKeeper来实现。ZooKeeper提供配置维护、分布式同步等功能,确保集群稳定运行。下图展示了基于ZooKeeper的HDFS HA架构。
|
8天前
|
存储 SQL 分布式计算
大数据时代的引擎:大数据架构随记
大数据架构通常分为四层:数据采集层、数据存储层、数据计算层和数据应用层。数据采集层负责从各种源采集、清洗和转换数据,常用技术包括Flume、Sqoop和Logstash+Filebeat。数据存储层管理数据的持久性和组织,常用技术有Hadoop HDFS、HBase和Elasticsearch。数据计算层处理大规模数据集,支持离线和在线计算,如Spark SQL、Flink等。数据应用层将结果可视化或提供给第三方应用,常用工具为Tableau、Zeppelin和Superset。
127 8
|
1月前
|
SQL 数据采集 分布式计算
【赵渝强老师】基于大数据组件的平台架构
本文介绍了大数据平台的总体架构及各层的功能。大数据平台架构分为五层:数据源层、数据采集层、大数据平台层、数据仓库层和应用层。其中,大数据平台层为核心,负责数据的存储和计算,支持离线和实时数据处理。数据仓库层则基于大数据平台构建数据模型,应用层则利用这些模型实现具体的应用场景。文中还提供了Lambda和Kappa架构的视频讲解。
198 3
【赵渝强老师】基于大数据组件的平台架构
|
1月前
|
机器学习/深度学习 弹性计算 人工智能
阿里云服务器架构有啥区别?X86计算、Arm、GPU异构、裸金属和高性能计算对比
阿里云ECS涵盖x86、ARM、GPU/FPGA/ASIC、弹性裸金属及高性能计算等多种架构。x86架构采用Intel/AMD处理器,适用于广泛企业级应用;ARM架构低功耗,适合容器与微服务;GPU/FPGA/ASIC专为AI、图形处理设计;弹性裸金属提供物理机性能;高性能计算则针对大规模并行计算优化。
|
8天前
|
存储 负载均衡 监控
揭秘 Elasticsearch 集群架构,解锁大数据处理神器
Elasticsearch 是一个强大的分布式搜索和分析引擎,广泛应用于大数据处理、实时搜索和分析。本文深入探讨了 Elasticsearch 集群的架构和特性,包括高可用性和负载均衡,以及主节点、数据节点、协调节点和 Ingest 节点的角色和功能。
23 0
|
1月前
|
运维 Serverless 数据处理
Serverless架构通过提供更快的研发交付速度、降低成本、简化运维、优化资源利用、提供自动扩展能力、支持实时数据处理和快速原型开发等优势,为图像处理等计算密集型应用提供了一个高效、灵活且成本效益高的解决方案。
Serverless架构通过提供更快的研发交付速度、降低成本、简化运维、优化资源利用、提供自动扩展能力、支持实时数据处理和快速原型开发等优势,为图像处理等计算密集型应用提供了一个高效、灵活且成本效益高的解决方案。
99 1
|
2月前
|
Docker 容器
docker:记录如何在x86架构上构造和使用arm架构的镜像
为了实现国产化适配,需将原x86平台上的Docker镜像转换为适用于ARM平台的镜像。本文介绍了如何配置Docker buildx环境,包括检查Docker版本、安装buildx插件、启用实验性功能及构建多平台镜像的具体步骤。通过这些操作,可以在x86平台上成功构建并运行ARM64镜像,实现跨平台的应用部署。
1750 2
|
2月前
|
运维 监控 Serverless
利用Serverless架构优化成本和可伸缩性
【10月更文挑战第13天】Serverless架构让开发者无需管理服务器即可构建和运行应用,实现成本优化与自动扩展。本文介绍其工作原理、核心优势及实施步骤,探讨在Web应用后端、数据处理等领域的应用,并分享实战技巧。
|
2月前
|
运维 Serverless 数据处理
Serverless架构通过提供更快的研发交付速度、降低成本、简化运维、优化资源利用、提供自动扩展能力、支持实时数据处理和快速原型开发等优势,为图像处理等计算密集型应用提供了一个高效、灵活且成本效益高的解决方案。
Serverless架构通过提供更快的研发交付速度、降低成本、简化运维、优化资源利用、提供自动扩展能力、支持实时数据处理和快速原型开发等优势,为图像处理等计算密集型应用提供了一个高效、灵活且成本效益高的解决方案。
64 3

热门文章

最新文章