使用transformer的YOLOv7及TensorRT部署

简介: 使用transformer的YOLOv7及TensorRT部署

最近在github上看到一个博主开源的YOLOv7仓库都惊呆了,YOLOv6都还没出来怎么就到YOLOv7了稍微看了下,原来作者是基于这两年来很火的transformer做的检测和分割模型,测试的效果都非常棒,比YOLOv5效果好很多。由此可见,基于Transformer based的检测模型才是未来。你会发现它学到的东西非常合理,比从一大堆boudingbox里面选择概率的范式要好一点。话不多说,先上代码链接:

https://github.com/jinfagang/yolov

1ca26529931c44238bc248a5627b7c3a.png

   开源的YOLOv7功能很强大,支持 YOLO, DETR, AnchorDETR等等。作者声称发现很多开源检测框架,比如YOLOv5、EfficientDetection都有自己的弱点。例如,YOLOv5实际上设计过度,太多混乱的代码。更令人惊讶的是,pytorch中至少有20多个不同版本的YOLOv3-YOLOv4的重新实现,其中99.99%是完全错误的,你既不能训练你的数据集,也不能使其与原paper相比。所以有了作者开源的这个仓库!该repo 支持DETR等模型的ONNX导出,并且可以进行tensorrt推理

 

    该repo提供了以下的工作:

  • YOLOv4 contained with CSP-Darknet53;
  • YOLOv7 arch with resnets backbone;
  • GridMask augmentation from PP-YOLO included;
  • Mosiac transform supported with a custom datasetmapper;
  • YOLOv7 arch Swin-Transformer support (higher accuracy but lower speed);
  • RandomColorDistortion, RandomExpand, RandomCrop, RandomFlip;
  • CIoU loss (DIoU, GIoU) and label smoothing (from YOLOv5 & YOLOv4);
  • YOLOv7 Res2net + FPN supported;
  • Pyramid Vision Transformer v2 (PVTv2) supported
  • YOLOX s,m,l backbone and PAFPN added, we have a new combination of YOLOX backbone and pafpn;
  • YOLOv7 with Res2Net-v1d backbone, we found res2net-v1d have a better accuracy then darknet53;
  • Added PPYOLOv2 PAN neck with SPP and dropblock;
  • YOLOX arch added, now you can train YOLOX model (anchor free yolo) as well;
  • DETR: transformer based detection model and onnx export supported, as well as TensorRT acceleration;
  • AnchorDETR: Faster converge version of detr, now supported!

   仓库提供了快速检测Quick start和train自己数据集的代码及操作流程,也提供了许多预训练模型可供下载,读者可依据自己的需要选择下载对应的检测模型。

6fb819a8118e43ab648a9c38044dd6fd.png

快速运行demo代码


python3 demo.py --config-file configs/wearmask/darknet53.yaml --input ./datasets/wearmask/images/val2017 --opts MODEL.WEIGHTS output/model_0009999.pth

实例分割


python demo.py --config-file configs/coco/sparseinst/sparse_inst_r50vd_giam_aug.yaml --video-input ~/Movies/Videos/86277963_nb2-1-80.flv -c 0.4 --opts MODEL.WEIGHTS weights/sparse_inst_r50vd_giam_aug_8bc5b3.pth

基于detectron2新推出的LazyConfig系统,使用LazyConfig模型运行


python3 demo_lazyconfig.py --config-file configs/new_baselines/panoptic_fpn_regnetx_0.4g.py --opts train.init_checkpoint=output/model_0004999.pth

训练数据集


python train_net.py --config-file configs/coco/darknet53.yaml --num-gpus 1

如果你想训练YOLOX,使用 config file configs/coco/yolox_s.yaml

导出 ONNX && TensorRT && TVM


detr

python export_onnx.py --config-file detr/config/file

SparseInst

python export_onnx.py --config-file configs/coco/sparseinst/sparse_inst_r50_giam_aug.yaml --video-input ~/Videos/a.flv  --opts MODEL.WEIGHTS weights/sparse_inst_r50_giam_aug_2b7d68.pth INPUT.MIN_SIZE_TEST 512

具体的操作流程可以去原仓库看,都有详细的解析!

检测结果


6399be06364b17ad810f6835d47ed45c.png

0f86ed9d6a43e027b70fc68831f72999.png

026dc4f2f51e5ce3be1a6523cd7248eb.png

参考链接


[1]https://manaai.cn/aisolution_detail.html?id=7

[2]https://github.com/jinfagang/yolov7

目录
打赏
0
0
0
0
6
分享
相关文章
Ubuntu系统安装gtest
Ubuntu系统安装gtest
432 0
大数据-63 Kafka 高级特性 分区 副本机制 宕机恢复 Leader选举
大数据-63 Kafka 高级特性 分区 副本机制 宕机恢复 Leader选举
117 5
大数据-63 Kafka 高级特性 分区 副本机制 宕机恢复 Leader选举
|
9月前
|
docker的导入本地镜像和导出本地镜像
本文介绍了如何使用Docker对本地镜像进行导入和导出操作,包括从本地导入`nginx.tar`镜像以及将`open-webui`镜像导出并压缩为`open-webui.tar.gz`。
1128 1
【YOLOv8改进 - 特征融合NECK】 HS-FPN :用于处理多尺度特征融合的网络结构,降低参数
MFDS-DETR是针对白细胞检测的创新方法,它通过HS-FPN和可变形自注意力解决规模差异和特征稀缺问题。HS-FPN利用通道注意力模块增强特征表达,改善多尺度挑战。代码和数据集可在给定链接获取。此方法在WBCDD、LISC和BCCD数据集上表现优越,证明了其有效性和通用性。YOLO系列文章提供了更多目标检测改进和实战案例。
利用容器化技术实现跨平台部署的Web应用开发
本文将介绍如何利用容器化技术,例如Docker和Kubernetes,实现跨平台部署的Web应用开发。我们将探讨容器化的优势以及如何使用Docker容器打包应用程序,然后利用Kubernetes进行管理和部署。通过容器化技术,开发者可以更加便捷地进行Web应用的开发、测试和部署,提高开发效率和应用的可靠性。
小唐竟然这样配置idea springboot 微服务批量启动!佩服
小唐竟然这样配置idea springboot 微服务批量启动!佩服
279 0
小唐竟然这样配置idea springboot 微服务批量启动!佩服
YOLOv8改进 | Neck篇 | 2024.1最新MFDS-DETR的HS-FPN改进特征融合层(降低100W参数,全网独家首发)
YOLOv8改进 | Neck篇 | 2024.1最新MFDS-DETR的HS-FPN改进特征融合层(降低100W参数,全网独家首发)
583 2
AI助理

你好,我是AI助理

可以解答问题、推荐解决方案等

登录插画

登录以查看您的控制台资源

管理云资源
状态一览
快捷访问