使用transformer的YOLOv7及TensorRT部署

简介: 使用transformer的YOLOv7及TensorRT部署

最近在github上看到一个博主开源的YOLOv7仓库都惊呆了,YOLOv6都还没出来怎么就到YOLOv7了稍微看了下,原来作者是基于这两年来很火的transformer做的检测和分割模型,测试的效果都非常棒,比YOLOv5效果好很多。由此可见,基于Transformer based的检测模型才是未来。你会发现它学到的东西非常合理,比从一大堆boudingbox里面选择概率的范式要好一点。话不多说,先上代码链接:

https://github.com/jinfagang/yolov

1ca26529931c44238bc248a5627b7c3a.png

   开源的YOLOv7功能很强大,支持 YOLO, DETR, AnchorDETR等等。作者声称发现很多开源检测框架,比如YOLOv5、EfficientDetection都有自己的弱点。例如,YOLOv5实际上设计过度,太多混乱的代码。更令人惊讶的是,pytorch中至少有20多个不同版本的YOLOv3-YOLOv4的重新实现,其中99.99%是完全错误的,你既不能训练你的数据集,也不能使其与原paper相比。所以有了作者开源的这个仓库!该repo 支持DETR等模型的ONNX导出,并且可以进行tensorrt推理

 

    该repo提供了以下的工作:

  • YOLOv4 contained with CSP-Darknet53;
  • YOLOv7 arch with resnets backbone;
  • GridMask augmentation from PP-YOLO included;
  • Mosiac transform supported with a custom datasetmapper;
  • YOLOv7 arch Swin-Transformer support (higher accuracy but lower speed);
  • RandomColorDistortion, RandomExpand, RandomCrop, RandomFlip;
  • CIoU loss (DIoU, GIoU) and label smoothing (from YOLOv5 & YOLOv4);
  • YOLOv7 Res2net + FPN supported;
  • Pyramid Vision Transformer v2 (PVTv2) supported
  • YOLOX s,m,l backbone and PAFPN added, we have a new combination of YOLOX backbone and pafpn;
  • YOLOv7 with Res2Net-v1d backbone, we found res2net-v1d have a better accuracy then darknet53;
  • Added PPYOLOv2 PAN neck with SPP and dropblock;
  • YOLOX arch added, now you can train YOLOX model (anchor free yolo) as well;
  • DETR: transformer based detection model and onnx export supported, as well as TensorRT acceleration;
  • AnchorDETR: Faster converge version of detr, now supported!

   仓库提供了快速检测Quick start和train自己数据集的代码及操作流程,也提供了许多预训练模型可供下载,读者可依据自己的需要选择下载对应的检测模型。

6fb819a8118e43ab648a9c38044dd6fd.png

快速运行demo代码


python3 demo.py --config-file configs/wearmask/darknet53.yaml --input ./datasets/wearmask/images/val2017 --opts MODEL.WEIGHTS output/model_0009999.pth

实例分割


python demo.py --config-file configs/coco/sparseinst/sparse_inst_r50vd_giam_aug.yaml --video-input ~/Movies/Videos/86277963_nb2-1-80.flv -c 0.4 --opts MODEL.WEIGHTS weights/sparse_inst_r50vd_giam_aug_8bc5b3.pth

基于detectron2新推出的LazyConfig系统,使用LazyConfig模型运行


python3 demo_lazyconfig.py --config-file configs/new_baselines/panoptic_fpn_regnetx_0.4g.py --opts train.init_checkpoint=output/model_0004999.pth

训练数据集


python train_net.py --config-file configs/coco/darknet53.yaml --num-gpus 1

如果你想训练YOLOX,使用 config file configs/coco/yolox_s.yaml

导出 ONNX && TensorRT && TVM


detr

python export_onnx.py --config-file detr/config/file

SparseInst

python export_onnx.py --config-file configs/coco/sparseinst/sparse_inst_r50_giam_aug.yaml --video-input ~/Videos/a.flv  --opts MODEL.WEIGHTS weights/sparse_inst_r50_giam_aug_2b7d68.pth INPUT.MIN_SIZE_TEST 512

具体的操作流程可以去原仓库看,都有详细的解析!

检测结果


6399be06364b17ad810f6835d47ed45c.png

0f86ed9d6a43e027b70fc68831f72999.png

026dc4f2f51e5ce3be1a6523cd7248eb.png

参考链接


[1]https://manaai.cn/aisolution_detail.html?id=7

[2]https://github.com/jinfagang/yolov7

相关文章
|
8月前
|
编解码 缓存 计算机视觉
改进的yolov5目标检测-yolov5替换骨干网络-yolo剪枝(TensorRT及NCNN部署)-1
改进的yolov5目标检测-yolov5替换骨干网络-yolo剪枝(TensorRT及NCNN部署)-1
|
8月前
|
算法 PyTorch 计算机视觉
改进的yolov5目标检测-yolov5替换骨干网络-yolo剪枝(TensorRT及NCNN部署)-2
改进的yolov5目标检测-yolov5替换骨干网络-yolo剪枝(TensorRT及NCNN部署)-2
改进的yolov5目标检测-yolov5替换骨干网络-yolo剪枝(TensorRT及NCNN部署)-2
|
8月前
|
机器学习/深度学习 算法 文件存储
YOLOv8改进 | 主干篇 | 利用MobileNetV3替换Backbone(轻量化网络结构)
YOLOv8改进 | 主干篇 | 利用MobileNetV3替换Backbone(轻量化网络结构)
677 0
YOLOv8改进 | 主干篇 | 利用MobileNetV3替换Backbone(轻量化网络结构)
|
6月前
|
机器学习/深度学习 文件存储 算法框架/工具
【YOLOv8改进- Backbone主干】2024最新轻量化网络MobileNetV4替换YoloV8的BackBone
YOLO目标检测专栏聚焦于模型的改进和实战应用,介绍了MobileNetV4,它在移动设备上优化了架构。文章提到了UIB(通用反向瓶颈)模块,结合了多种结构,增强了特征提取;Mobile MQA是专为移动平台设计的注意力层,提升了速度;优化的NAS提升了搜索效率。通过这些创新,MNv4在不同硬件上实现了性能和效率的平衡,且通过蒸馏技术提高了准确性。模型在Pixel 8 EdgeTPU上达到87%的ImageNet-1K准确率,延迟仅为3.8ms。论文、PyTorch和TensorFlow实现代码链接也已提供。
|
机器学习/深度学习 PyTorch 算法框架/工具
【Transformer系列(5)】Transformer代码超详细解读(Pytorch)
【Transformer系列(5)】Transformer代码超详细解读(Pytorch)
913 1
【Transformer系列(5)】Transformer代码超详细解读(Pytorch)
|
7月前
|
固态存储
【YOLO系列】YOLOv10模型结构详解与推理部署实现
【YOLO系列】YOLOv10模型结构详解与推理部署实现
1241 0
|
8月前
|
机器学习/深度学习 存储 编解码
YOLOv8改进 | 主干篇 | 利用MobileNetV1替换Backbone(轻量化网络结构)
YOLOv8改进 | 主干篇 | 利用MobileNetV1替换Backbone(轻量化网络结构)
231 2
|
8月前
|
机器学习/深度学习 固态存储 测试技术
YOLOv8改进 | 主干篇 | 利用MobileNetV2替换Backbone(轻量化网络结构)
YOLOv8改进 | 主干篇 | 利用MobileNetV2替换Backbone(轻量化网络结构)
451 1
|
8月前
|
固态存储 测试技术 计算机视觉
YOLOv5改进 | 主干篇 | 利用MobileNetV2替换Backbone(轻量化网络结构)
YOLOv5改进 | 主干篇 | 利用MobileNetV2替换Backbone(轻量化网络结构)
384 0
|
8月前
|
机器学习/深度学习 存储 编解码
YOLOv5改进 | 主干篇 | 利用MobileNetV1替换Backbone(轻量化网络结构)
YOLOv5改进 | 主干篇 | 利用MobileNetV1替换Backbone(轻量化网络结构)
266 0

热门文章

最新文章

下一篇
开通oss服务