经典神经网络 | 从Inception v1到Inception v4全解析

本文涉及的产品
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介: 经典神经网络 | 从Inception v1到Inception v4全解析

本文介绍了 Inception 家族的主要成员,包括 Inception v1、Inception v2 、Inception v3、Inception v4 和 Inception-ResNet。它们的计算效率与参数效率在所有卷积架构中都是顶尖的。

Inception 网络是CNN分类器发展史上一个重要的里程碑。在 Inception 出现之前,大部分流行 CNN 仅仅是把卷积层堆叠得越来越多,使网络越来越深,以此希望能够得到更好的性能。

例如AlexNet,GoogleNet、 VGG-Net、ResNet等都是通过加深网络的层次和深度来提高准确率。

GoogLeNet 最大的特点就是使用了 Inception 模块,它的目的是设计一种具有优良局部拓扑结构的网络,即对输入图像并行地执行多个卷积运算或池化操作,并将所有输出结果拼接为一个非常深的特征图。因为 1*1、3*3 或 5*5 等不同的卷积运算与池化操作可以获得输入图像的不同信息,并行处理这些运算并结合所有结果将获得更好的图像表征。

Inception常见的版本有:

  • Inception v1
  • Inception v2 和 Inception v3
  • Inception v4 和 Inception-ResNet

每个版本都是前一个版本的迭代进化。了解 Inception 网络的升级可以帮助我们构建自定义分类器,优化速度和准确率。

Inception v1


Inception v1首先是出现在《Going deeper with convolutions》这篇论文中,作者提出一种深度卷积神经网络 Inception,它在 ILSVRC14 中达到了当时最好的分类和检测性能。

Inception v1的主要特点:一是挖掘了1 1卷积核的作用*,减少了参数,提升了效果;二是让模型自己来决定用多大的的卷积核

1* 1卷积


074604a651c7e62a29a044dc6dd0d48b.jpg

1* 1卷积不仅可以减少神经网络的参数量,还可以压缩通道数,大大提高了计算效率。

把不同大小的卷积核组合在一起


306505fe02a61cbbd4b527e65c2c6ca1.jpg

把不同的卷积核组合在一起,不仅可以增大感受野,而且还可以提高神经网络的鲁棒性。在一层里把不同大小的卷积核叠在一起后,意味着一层里可以产生不同大小的卷积核处理之后的效果,也意味着不用人为的来选择这一层要怎么卷,这个网络自己便会学习用什么样的卷积(或池化)操作最好。

下面是卷积神经网络Inception模块的基本组成部分:

3a8dd51035cd878c6ee892741e5d1af6.jpg

Inception v2


Inception v2 和 Inception v3 来自同一篇论文《Rethinking the Inception Architecture for Computer Vision》,作者提出了一系列能增加准确度和减少计算复杂度的修正方法。

将5* 5卷积分解为两个3* 3卷积


将 5×5 的卷积分解为两个 3×3 的卷积运算以提升计算速度。如此可以有效地只使用约(3x3 + 3x3)/(5x5)=72%的计算开销。下图可看出此替换的有效性。

3a9e1d95efd055413375bc334fb70789.jpg

所以升级后的Inception模块如下图所示:

6cf9ebd8981d0e474c360d7e68cb8402.jpg

最左侧前一版 Inception 模块中的 5×5 卷积变成了两个 3×3 卷积的堆叠。

将 n*n 的卷积核尺寸分解为 1×n 和 n×1 两个卷积。


例如,一个 3×3 的卷积等价于首先执行一个 1×3 的卷积再执行一个 3×1 的卷积。这样同样可以只使用约(1x3 + 3x1) / (3x3) = 67%的计算开销。下图是此替换的有效性。作者更进一步发挥想象,认为任一个nxn conv都可通过替换为两个分别为1xnnx1的convs层来节省计算与内存。

6e353b8867b0205c791211951f80beb3.jpg

更新后的Inception模块如下图所示:

af6245788d3796a2b4a82e1c1fb7af75.jpg

此处如果 n=3,则与上一张图像一致。最左侧的 5x5 卷积可被表示为两个 3x3 卷积,它们又可以被表示为 1x3 和 3x1 卷积。

模块中的滤波器组被扩展(即变得更宽而不是更深),以解决表征性瓶颈。如果该模块没有被拓展宽度,而是变得更深,那么维度会过多减少,造成信息损失。如下图所示:

c78987802c47230dcedd6d6c35b52b9b.jpg

Inception v3


Inception v3 整合了前面 Inception v2 中提到的所有升级,还使用了:

  • RMSProp 优化器;
  • Factorized 7x7 卷积;
  • 辅助分类器使用了 BatchNorm;
  • 标签平滑(添加到损失公式的一种正则化项,旨在阻止网络对某一类别过分自信,即阻止过拟合)。

Inception v2和Inception v3最终模型


e024d0d11bf37ecc7219089885037b68.jpg

Inception v4


Inception v4 和 Inception -ResNet 在同一篇论文《Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning》中提出来。

Inception v4网络结构


290d01de56705349a01375e958100f6e.jpg

首先stem分支,可以直接看论文的结构图:

75111a3c41cd9fe3eb4ed2fc0ef1622f.jpg

然后接下来它们有三个主要的Inception 模块和Reduction模块,称为 A、B 和 C(和 Inception v2 不同,这些模块确实被命名为 A、B 和 C)。它们看起来和 Inception v2(或 v3)变体非常相似。

Inception v4 引入了专用的「缩减块」(reduction block),它被用于改变网格的宽度和高度。早期的版本并没有明确使用缩减块,但也实现了其功能。

缩减块 A(从 35x35 到 17x17 的尺寸缩减)和缩减块 B(从 17x17 到 8x8 的尺寸缩减)。这里参考了论文中的相同超参数设置(V,I,k)。

直接看其网络结构:

ee94fb0318d96c351f0cb78bee2b4e47.jpg

Inception-ResNet


在该论文中,作者将Inception 架构残差连接(Residual)结合起来。并通过实验明确地证实了,结合残差连接可以显著加速 Inception 的训练。也有一些证据表明残差 Inception 网络在相近的成本下略微超过没有残差连接的 Inception 网络。作者还通过三个残差和一个 Inception v4 的模型集成,在 ImageNet 分类挑战赛的测试集上取得了 3.08% 的 top-5 误差率。

cf23411b992f2ccf4817c3e112ea1fb6.jpg

(左起)Inception ResNet 中的 Inception 模块 A、B、C。注意池化层被残差连接所替代,并在残差加运算之前有额外的 1x1 卷积。

  • 主要 inception 模块的池化运算由残差连接替代。然而,你仍然可以在缩减块中找到这些运算。缩减块 A 和 Inception v4 中的缩减块相同。

具体Inception-resnet A、B、C各个模块网络结构详见原论文

针对深网络结构设计的衰减因子


如果卷积核的数量超过 1000,则网络架构更深层的残差单元将导致网络崩溃。因此,为了增加稳定性,作者通过 0.1 到 0.3 的比例缩放残差激活值。

38ab5e2dc647fe462a233c49c60433df.jpg

激活值通过一个常数进行比例缩放,以防止网络崩溃。

Inception-ResNet v1结构


a598d1dd0399c19e9385b7d8bcab7a95.jpg

结果精度对比


16ec6ad0f9850a790d0b06596f18c21d.jpg

相关文章
|
1月前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
178 30
|
17天前
|
网络协议
TCP报文格式全解析:网络小白变高手的必读指南
本文深入解析TCP报文格式,涵盖源端口、目的端口、序号、确认序号、首部长度、标志字段、窗口大小、检验和、紧急指针及选项字段。每个字段的作用和意义详尽说明,帮助理解TCP协议如何确保可靠的数据传输,是互联网通信的基石。通过学习这些内容,读者可以更好地掌握TCP的工作原理及其在网络中的应用。
|
17天前
|
存储 监控 网络协议
一次读懂网络分层:应用层到物理层全解析
网络模型分为五层结构,从应用层到物理层逐层解析。应用层提供HTTP、SMTP、DNS等常见协议;传输层通过TCP和UDP确保数据可靠或高效传输;网络层利用IP和路由器实现跨网数据包路由;数据链路层通过MAC地址管理局域网设备;物理层负责比特流的物理传输。各层协同工作,使网络通信得以实现。
|
17天前
|
网络协议 安全 网络安全
探索网络模型与协议:从OSI到HTTPs的原理解析
OSI七层网络模型和TCP/IP四层模型是理解和设计计算机网络的框架。OSI模型包括物理层、数据链路层、网络层、传输层、会话层、表示层和应用层,而TCP/IP模型则简化为链路层、网络层、传输层和 HTTPS协议基于HTTP并通过TLS/SSL加密数据,确保安全传输。其连接过程涉及TCP三次握手、SSL证书验证、对称密钥交换等步骤,以保障通信的安全性和完整性。数字信封技术使用非对称加密和数字证书确保数据的机密性和身份认证。 浏览器通过Https访问网站的过程包括输入网址、DNS解析、建立TCP连接、发送HTTPS请求、接收响应、验证证书和解析网页内容等步骤,确保用户与服务器之间的安全通信。
74 1
|
1月前
|
SQL 安全 算法
网络安全之盾:漏洞防御与加密技术解析
在数字时代的浪潮中,网络安全和信息安全成为维护个人隐私和企业资产的重要防线。本文将深入探讨网络安全的薄弱环节—漏洞,并分析如何通过加密技术来加固这道防线。文章还将分享提升安全意识的重要性,以预防潜在的网络威胁,确保数据的安全与隐私。
75 2
|
2月前
|
安全 算法 网络安全
网络安全的盾牌与剑:漏洞防御与加密技术深度解析
在数字信息的海洋中,网络安全是航行者不可或缺的指南针。本文将深入探讨网络安全的两大支柱——漏洞防御和加密技术,揭示它们如何共同构筑起信息时代的安全屏障。从最新的网络攻击手段到防御策略,再到加密技术的奥秘,我们将一起揭开网络安全的神秘面纱,理解其背后的科学原理,并掌握保护个人和企业数据的关键技能。
68 3
|
2月前
|
网络协议
网络通信的基石:TCP/IP协议栈的层次结构解析
在现代网络通信中,TCP/IP协议栈是构建互联网的基础。它定义了数据如何在网络中传输,以及如何确保数据的完整性和可靠性。本文将深入探讨TCP/IP协议栈的层次结构,揭示每一层的功能和重要性。
82 5
|
2月前
|
网络协议 安全 文件存储
动态DNS(DDNS)技术在当前网络环境中日益重要,它允许使用动态IP地址的设备通过固定域名访问
动态DNS(DDNS)技术在当前网络环境中日益重要,它允许使用动态IP地址的设备通过固定域名访问,即使IP地址变化,也能通过DDNS服务保持连接。适用于家庭网络远程访问设备及企业临时或移动设备管理,提供便捷性和灵活性。示例代码展示了如何使用Python实现基本的DDNS更新。尽管存在服务可靠性和安全性挑战,DDNS仍极大提升了网络资源的利用效率。
89 6
|
2月前
|
监控 网络协议 网络性能优化
网络通信的核心选择:TCP与UDP协议深度解析
在网络通信领域,TCP(传输控制协议)和UDP(用户数据报协议)是两种基础且截然不同的传输层协议。它们各自的特点和适用场景对于网络工程师和开发者来说至关重要。本文将深入探讨TCP和UDP的核心区别,并分析它们在实际应用中的选择依据。
68 3
|
2月前
|
SQL 监控 安全
网络安全的盾牌与利剑:漏洞防御与加密技术解析
在数字时代的洪流中,网络安全如同一场没有硝烟的战争。本文将深入探讨网络安全的核心议题,从网络漏洞的发现到防御策略的实施,以及加密技术的运用,揭示保护信息安全的关键所在。通过实际案例分析,我们将一窥网络攻击的手段和防御的艺术,同时提升个人与企业的安全意识,共同构筑一道坚固的数字防线。

推荐镜像

更多
下一篇
开通oss服务