经典优化算法 | 蚁群算法解析

本文涉及的产品
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
简介: 经典优化算法 | 蚁群算法解析

蚁群算法基本思想


蚁群算法的基本原理来源于自然界中蚂蚁觅食的最短路径问题。根据昆虫学家的观察,发现自然界的蚂蚁虽然视觉不发达,但它可以在没有任何提示的情况下找到从食物源到巢穴的最短路径,并且能在环境发生变化(如原有路径上有了障碍物)后,自适应地搜索新的最佳路径。蚂蚁是如何做到这一点的呢?

原来,蚂蚁在寻找食物源时,能在其走过的路径上释放一种蚂蚁特有的分泌物一信息激素一也可称之为信息素,使得一定范围内的其他蚂蚁能够察觉到并由此影响它们以后的行为。当一些路径上通过的蚂蚁越来越多时,其留下的信息素也越来越多,以致信息素强度增大(当然,随时间的推移会逐渐减弱),所以蚂蚁选择该路径的概率也越高,从而更增加了该路径的信息素强度,这种选择过程被称之为蚂蚁的自催化行为。由于其原理是一种正反馈机制.因此,也可将蚂蚁王国理解为所谓的增强型学习系统。

在自然界中,蚁群的这种寻找路径的过程表现为一种正反馈过程,“蚁群算法”就是模仿生物学蚂蚁群觅食寻找最优路径原理衍生出来的。

蚁群算法数学模型


应该说前面介绍的蚁群算法只是一种算法思想,要是想真正应用该算法,还需要针对一个特定问题, 建立相应的数学模型。现仍以经典的TSP问题为例,来进一步阐述如何基于蚁群算法来求解实际问题。

对于TSP问题,为不失一般性,设整个蚂蚁群体中蚂蚁的数量为m,城市的数量为n,城市i与城市j之间的距离为 (i,j=1,2,…,n),t时刻城市i与城市j连接路径上的信息素浓度为(t)。初始时刻,蚂蚁被放置在不同的城市里,且各城市间连接路径上的信息素浓度相同,不妨设(0)=(0)。然后蚂蚁将按一定概率选择线路,不妨设为t时刻蚂蚁k从城市i转移到城市j的概率。我们知道,“蚂蚁TSP”策略会受到两方面的左右,首先是访问某城市的期望,另外便是其他蚂蚁释放的信息素浓度,所以定义:

image.png

在蚂蚁遍历城市的过程中,与实际情况相似的是,在蚂蚁释放信息素的同时,各个城市间连接路径上的信息素的强度也在通过挥发等方式逐渐消失。为了描述这一特征,不妨令p(0<p<1)表示信息素的挥发程度。这样,当所有蚂蚁完整走完一遍所有城市之后,各个城市间连接路径上的信息浓度为:

image.png

蚁群算法流程


用蚁群算法求解TSP问题的算法流程如下图所示,具体每步的含义如下:

  • 步骤1:对相关参数进行初始化,包括蚁初始化群规模、信息素因子、启发函数因子、信息素、挥发因子、信息素常数、最大迭代次数等,以及将数据读人程序,并对数据进行基本的处理,如将城市的坐标位置,转为城市间的矩阵。
  • 步骤2:随机将蚂蚁放于不同的出发点,对每个蚂蚁计算其下一个访问城市,直至所更新信息素表有蚂蚁访问完所有城市。
  • 步骤3:计算各个蚂蚁经过的路径长度,记录当前迭代次数中的最优解,同时对各个城市连接路径上的信息素浓度进行更新。
  • 步骤4:判断是否达到最大迭代次数,若否,则返回步骤2,否则终止程序。
  • 步骤5:输出程序结果,并根据需要输出程序寻优过程中的相关指标,如运行时间、收敛迭代次数等。

cce4ff0c987f070c63ad82f88cb30501.png

python简单实现


import numpy as np
import matplotlib.pyplot as plt
# 建立“蚂蚁”类
class Ant(object):
    def __init__(self, path):
        self.path = path                       # 蚂蚁当前迭代整体路径
        self.length = self.calc_length(path)   # 蚂蚁当前迭代整体路径长度
    def calc_length(self, path_):              # path=[A, B, C, D, A]注意路径闭环
        length_ = 0
        for i in range(len(path_)-1):
            delta = (path_[i].x - path_[i+1].x, path_[i].y - path_[i+1].y)
            length_ += np.linalg.norm(delta)
        return length_
    @staticmethod
    def calc_len(A, B):                        # 静态方法,计算城市A与城市B之间的距离
        return np.linalg.norm((A.x - B.x, A.y - B.y))
# 建立“城市”类
class City(object):
    def __init__(self, x, y):
        self.x = x
        self.y = y
# 建立“路径”类
class Path(object):
    def __init__(self, A):                     # A为起始城市
        self.path = [A, A]
    def add_path(self, B):                     # 追加路径信息,方便计算整体路径长度
        self.path.append(B)
        self.path[-1], self.path[-2] = self.path[-2], self.path[-1]
# 构建“蚁群算法”的主体
class ACO(object):
    def __init__(self, ant_num=50, maxIter=300, alpha=1, beta=5, rho=0.1, Q=1):
        self.ants_num = ant_num   # 蚂蚁个数
        self.maxIter = maxIter    # 蚁群最大迭代次数
        self.alpha = alpha        # 信息启发式因子
        self.beta = beta          # 期望启发式因子
        self.rho = rho            # 信息素挥发速度
        self.Q = Q                # 信息素强度
        ###########################
        self.deal_data('coordinates.dat')                         # 提取所有城市的坐标信息
        ###########################
        self.path_seed = np.zeros(self.ants_num).astype(int)      # 记录一次迭代过程中每个蚂蚁的初始城市下标
        self.ants_info = np.zeros((self.maxIter, self.ants_num))  # 记录每次迭代后所有蚂蚁的路径长度信息
        self.best_path = np.zeros(self.maxIter)                   # 记录每次迭代后整个蚁群的“历史”最短路径长度
        ###########################
        self.solve()              # 完成算法的迭代更新
        self.display()            # 数据可视化展示
    def deal_data(self, filename):
        with open(filename, 'rt') as f:
            temp_list = list(line.split() for line in f)                                   # 临时存储提取出来的坐标信息
        self.cities_num = len(temp_list)                                                   # 1. 获取城市个数
        self.cities = list(City(float(item[0]), float(item[1])) for item in temp_list)     # 2. 构建城市列表
        self.city_dist_mat = np.zeros((self.cities_num, self.cities_num))                  # 3. 构建城市距离矩阵
        for i in range(self.cities_num):
            A = self.cities[i]
            for j in range(i, self.cities_num):
                B = self.cities[j]
                self.city_dist_mat[i][j] = self.city_dist_mat[j][i] = Ant.calc_len(A, B)
        self.phero_mat = np.ones((self.cities_num, self.cities_num))                       # 4. 初始化信息素矩阵
        # self.phero_upper_bound = self.phero_mat.max() * 1.2                              ###信息素浓度上限
        self.eta_mat = 1/(self.city_dist_mat + np.diag([np.inf]*self.cities_num))          # 5. 初始化启发函数矩阵
    def solve(self):
        iterNum = 0                                                            # 当前迭代次数
        while iterNum < self.maxIter:
            self.random_seed()                                                 # 使整个蚁群产生随机的起始点
            delta_phero_mat = np.zeros((self.cities_num, self.cities_num))     # 初始化每次迭代后信息素矩阵的增量
            ##########################################################################
            for i in range(self.ants_num):
                city_index1 = self.path_seed[i]                                # 每只蚂蚁访问的第一个城市下标
                ant_path = Path(self.cities[city_index1])                      # 记录每只蚂蚁访问过的城市
                tabu = [city_index1]                                           # 记录每只蚂蚁访问过的城市下标,禁忌城市下标列表
                non_tabu = list(set(range(self.cities_num)) - set(tabu))
                for j in range(self.cities_num-1):                             # 对余下的城市进行访问
                    up_proba = np.zeros(self.cities_num-len(tabu))             # 初始化状态迁移概率的分子
                    for k in range(self.cities_num-len(tabu)):
                        up_proba[k] = np.power(self.phero_mat[city_index1][non_tabu[k]], self.alpha) * \
                        np.power(self.eta_mat[city_index1][non_tabu[k]], self.beta)
                    proba = up_proba/sum(up_proba)                             # 每条可能子路径上的状态迁移概率
                    while True:                                                # 提取出下一个城市的下标
                        random_num = np.random.rand()
                        index_need = np.where(proba > random_num)[0]
                        if len(index_need) > 0:
                            city_index2 = non_tabu[index_need[0]]
                            break
                    ant_path.add_path(self.cities[city_index2])
                    tabu.append(city_index2)
                    non_tabu = list(set(range(self.cities_num)) - set(tabu))
                    city_index1 = city_index2
                self.ants_info[iterNum][i] = Ant(ant_path.path).length
                if iterNum == 0 and i == 0:                                    # 完成对最佳路径城市的记录
                    self.best_cities = ant_path.path
                else:
                    if self.ants_info[iterNum][i] < Ant(self.best_cities).length: self.best_cities = ant_path.path
                tabu.append(tabu[0])                                           # 每次迭代完成后,使禁忌城市下标列表形成完整闭环
                for l in range(self.cities_num):
                    delta_phero_mat[tabu[l]][tabu[l+1]] += self.Q/self.ants_info[iterNum][i]
            self.best_path[iterNum] = Ant(self.best_cities).length
            self.update_phero_mat(delta_phero_mat)                             # 更新信息素矩阵
            iterNum += 1
    def update_phero_mat(self, delta):
        self.phero_mat = (1 - self.rho) * self.phero_mat + delta
        # self.phero_mat = np.where(self.phero_mat > self.phero_upper_bound, self.phero_upper_bound, self.phero_mat) # 判断是否超过浓度上限
    def random_seed(self):                                                     # 产生随机的起始点下表,尽量保证所有蚂蚁的起始点不同
        if self.ants_num <= self.cities_num:                                   # 蚂蚁数 <= 城市数
            self.path_seed[:] = np.random.permutation(range(self.cities_num))[:self.ants_num]
        else:                                                                  # 蚂蚁数 > 城市数
            self.path_seed[:self.cities_num] = np.random.permutation(range(self.cities_num))
            temp_index = self.cities_num
            while temp_index + self.cities_num <= self.ants_num:
                self.path_seed[temp_index:temp_index + self.cities_num] = np.random.permutation(range(self.cities_num))
                temp_index += self.cities_num
            temp_left = self.ants_num % self.cities_num
            if temp_left != 0:
                self.path_seed[temp_index:] = np.random.permutation(range(self.cities_num))[:temp_left]
    def display(self):                                                         # 数据可视化展示
        plt.figure(figsize=(6, 10))
        plt.subplot(211)
        plt.plot(self.ants_info, 'g.')
        plt.plot(self.best_path, 'r-', label='history_best')
        plt.xlabel('Iteration')
        plt.ylabel('length')
        plt.legend()
        plt.subplot(212)
        plt.plot(list(city.x for city in self.best_cities), list(city.y for city in self.best_cities), 'g-')
        plt.plot(list(city.x for city in self.best_cities), list(city.y for city in self.best_cities), 'r.')
        plt.xlabel('x')
        plt.ylabel('y')
        plt.savefig('ACO.png', dpi=500)
        plt.show()
        plt.close()
ACO()

输出:

8d2f272bd010896583eb779c0359084e.png

88d418f60d01d34d4244b8bb0ba2f041.png

参考文献


[1]https://www.cnblogs.com/xxhbdk/p/9177423.html

[2]《matlab在数学建模中的应用》

目录
打赏
0
0
0
0
6
分享
相关文章
基于 C# 的内网行为管理软件入侵检测算法解析
当下数字化办公环境中,内网行为管理软件已成为企业维护网络安全、提高办公效率的关键工具。它宛如一位恪尽职守的网络守护者,持续监控内网中的各类活动,以确保数据安全及网络稳定。在其诸多功能实现的背后,先进的数据结构与算法发挥着至关重要的作用。本文将深入探究一种应用于内网行为管理软件的 C# 算法 —— 基于二叉搜索树的入侵检测算法,并借助具体代码例程予以解析。
23 4
基于BBO生物地理优化的三维路径规划算法MATLAB仿真
本程序基于BBO生物地理优化算法,实现三维空间路径规划的MATLAB仿真(测试版本:MATLAB2022A)。通过起点与终点坐标输入,算法可生成避障最优路径,并输出优化收敛曲线。BBO算法将路径视为栖息地,利用迁移和变异操作迭代寻优。适应度函数综合路径长度与障碍物距离,确保路径最短且安全。程序运行结果完整、无水印,适用于科研与教学场景。
基于NSGAII的的柔性作业调度优化算法MATLAB仿真,仿真输出甘特图
本程序基于NSGA-II算法实现柔性作业调度优化,适用于多目标优化场景(如最小化完工时间、延期、机器负载及能耗)。核心代码完成任务分配与甘特图绘制,支持MATLAB 2022A运行。算法通过初始化种群、遗传操作和选择策略迭代优化调度方案,最终输出包含完工时间、延期、机器负载和能耗等关键指标的可视化结果,为制造业生产计划提供科学依据。
JavaScript 中通过Array.sort() 实现多字段排序、排序稳定性、随机排序洗牌算法、优化排序性能,JS中排序算法的使用详解(附实际应用代码)
Array.sort() 是一个功能强大的方法,通过自定义的比较函数,可以处理各种复杂的排序逻辑。无论是简单的数字排序,还是多字段、嵌套对象、分组排序等高级应用,Array.sort() 都能胜任。同时,通过性能优化技巧(如映射排序)和结合其他数组方法(如 reduce),Array.sort() 可以用来实现高效的数据处理逻辑。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
基于入侵野草算法的KNN分类优化matlab仿真
本程序基于入侵野草算法(IWO)优化KNN分类器,通过模拟自然界中野草的扩散与竞争过程,寻找最优特征组合和超参数。核心步骤包括初始化、繁殖、变异和选择,以提升KNN分类效果。程序在MATLAB2022A上运行,展示了优化后的分类性能。该方法适用于高维数据和复杂分类任务,显著提高了分类准确性。
JS数组操作方法全景图,全网最全构建完整知识网络!js数组操作方法全集(实现筛选转换、随机排序洗牌算法、复杂数据处理统计等情景详解,附大量源码和易错点解析)
这些方法提供了对数组的全面操作,包括搜索、遍历、转换和聚合等。通过分为原地操作方法、非原地操作方法和其他方法便于您理解和记忆,并熟悉他们各自的使用方法与使用范围。详细的案例与进阶使用,方便您理解数组操作的底层原理。链式调用的几个案例,让您玩转数组操作。 只有锻炼思维才能可持续地解决问题,只有思维才是真正值得学习和分享的核心要素。如果这篇博客能给您带来一点帮助,麻烦您点个赞支持一下,还可以收藏起来以备不时之需,有疑问和错误欢迎在评论区指出~
基于GA遗传优化TCN-LSTM时间卷积神经网络时间序列预测算法matlab仿真
本项目基于MATLAB 2022a实现了一种结合遗传算法(GA)优化的时间卷积神经网络(TCN)时间序列预测算法。通过GA全局搜索能力优化TCN超参数(如卷积核大小、层数等),显著提升模型性能,优于传统GA遗传优化TCN方法。项目提供完整代码(含详细中文注释)及操作视频,运行后无水印效果预览。 核心内容包括:1) 时间序列预测理论概述;2) TCN结构(因果卷积层与残差连接);3) GA优化流程(染色体编码、适应度评估等)。最终模型在金融、气象等领域具备广泛应用价值,可实现更精准可靠的预测结果。
基于WOA鲸鱼优化的CNN-LSTM-SAM网络时间序列回归预测算法matlab仿真
本内容介绍了一种基于CNN-LSTM-SAM网络与鲸鱼优化算法(WOA)的时间序列预测方法。算法运行于Matlab2022a,完整程序无水印并附带中文注释及操作视频。核心流程包括数据归一化、种群初始化、适应度计算及参数更新,最终输出最优网络参数完成预测。CNN层提取局部特征,LSTM层捕捉长期依赖关系,自注意力机制聚焦全局特性,全连接层整合特征输出结果,适用于复杂非线性时间序列预测任务。
基于生物地理算法的MLP多层感知机优化matlab仿真
本程序基于生物地理算法(BBO)优化MLP多层感知机,通过MATLAB2022A实现随机数据点的趋势预测,并输出优化收敛曲线。BBO模拟物种在地理空间上的迁移、竞争与适应过程,以优化MLP的权重和偏置参数,提升预测性能。完整程序无水印,适用于机器学习和数据预测任务。
101 31
基于LSB最低有效位的音频水印嵌入提取算法FPGA实现,包含testbench和MATLAB对比
本项目展示了一种基于FPGA的音频水印算法,采用LSB(最低有效位)技术实现版权保护与数据追踪功能。使用Vivado2019.2和Matlab2022a开发,完整代码含中文注释及操作视频。算法通过修改音频采样点的最低有效位嵌入水印,人耳难以察觉变化。然而,面对滤波或压缩等攻击时,水印提取可能受影响。该项目运行效果无水印干扰,适合实时应用场景,核心逻辑简单高效,时间复杂度低。

热门文章

最新文章

推荐镜像

更多