经典优化算法 | 蚁群算法解析

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: 经典优化算法 | 蚁群算法解析

蚁群算法基本思想


蚁群算法的基本原理来源于自然界中蚂蚁觅食的最短路径问题。根据昆虫学家的观察,发现自然界的蚂蚁虽然视觉不发达,但它可以在没有任何提示的情况下找到从食物源到巢穴的最短路径,并且能在环境发生变化(如原有路径上有了障碍物)后,自适应地搜索新的最佳路径。蚂蚁是如何做到这一点的呢?

原来,蚂蚁在寻找食物源时,能在其走过的路径上释放一种蚂蚁特有的分泌物一信息激素一也可称之为信息素,使得一定范围内的其他蚂蚁能够察觉到并由此影响它们以后的行为。当一些路径上通过的蚂蚁越来越多时,其留下的信息素也越来越多,以致信息素强度增大(当然,随时间的推移会逐渐减弱),所以蚂蚁选择该路径的概率也越高,从而更增加了该路径的信息素强度,这种选择过程被称之为蚂蚁的自催化行为。由于其原理是一种正反馈机制.因此,也可将蚂蚁王国理解为所谓的增强型学习系统。

在自然界中,蚁群的这种寻找路径的过程表现为一种正反馈过程,“蚁群算法”就是模仿生物学蚂蚁群觅食寻找最优路径原理衍生出来的。

蚁群算法数学模型


应该说前面介绍的蚁群算法只是一种算法思想,要是想真正应用该算法,还需要针对一个特定问题, 建立相应的数学模型。现仍以经典的TSP问题为例,来进一步阐述如何基于蚁群算法来求解实际问题。

对于TSP问题,为不失一般性,设整个蚂蚁群体中蚂蚁的数量为m,城市的数量为n,城市i与城市j之间的距离为 (i,j=1,2,…,n),t时刻城市i与城市j连接路径上的信息素浓度为(t)。初始时刻,蚂蚁被放置在不同的城市里,且各城市间连接路径上的信息素浓度相同,不妨设(0)=(0)。然后蚂蚁将按一定概率选择线路,不妨设为t时刻蚂蚁k从城市i转移到城市j的概率。我们知道,“蚂蚁TSP”策略会受到两方面的左右,首先是访问某城市的期望,另外便是其他蚂蚁释放的信息素浓度,所以定义:

image.png

在蚂蚁遍历城市的过程中,与实际情况相似的是,在蚂蚁释放信息素的同时,各个城市间连接路径上的信息素的强度也在通过挥发等方式逐渐消失。为了描述这一特征,不妨令p(0<p<1)表示信息素的挥发程度。这样,当所有蚂蚁完整走完一遍所有城市之后,各个城市间连接路径上的信息浓度为:

image.png

蚁群算法流程


用蚁群算法求解TSP问题的算法流程如下图所示,具体每步的含义如下:

  • 步骤1:对相关参数进行初始化,包括蚁初始化群规模、信息素因子、启发函数因子、信息素、挥发因子、信息素常数、最大迭代次数等,以及将数据读人程序,并对数据进行基本的处理,如将城市的坐标位置,转为城市间的矩阵。
  • 步骤2:随机将蚂蚁放于不同的出发点,对每个蚂蚁计算其下一个访问城市,直至所更新信息素表有蚂蚁访问完所有城市。
  • 步骤3:计算各个蚂蚁经过的路径长度,记录当前迭代次数中的最优解,同时对各个城市连接路径上的信息素浓度进行更新。
  • 步骤4:判断是否达到最大迭代次数,若否,则返回步骤2,否则终止程序。
  • 步骤5:输出程序结果,并根据需要输出程序寻优过程中的相关指标,如运行时间、收敛迭代次数等。

cce4ff0c987f070c63ad82f88cb30501.png

python简单实现


import numpy as np
import matplotlib.pyplot as plt
# 建立“蚂蚁”类
class Ant(object):
    def __init__(self, path):
        self.path = path                       # 蚂蚁当前迭代整体路径
        self.length = self.calc_length(path)   # 蚂蚁当前迭代整体路径长度
    def calc_length(self, path_):              # path=[A, B, C, D, A]注意路径闭环
        length_ = 0
        for i in range(len(path_)-1):
            delta = (path_[i].x - path_[i+1].x, path_[i].y - path_[i+1].y)
            length_ += np.linalg.norm(delta)
        return length_
    @staticmethod
    def calc_len(A, B):                        # 静态方法,计算城市A与城市B之间的距离
        return np.linalg.norm((A.x - B.x, A.y - B.y))
# 建立“城市”类
class City(object):
    def __init__(self, x, y):
        self.x = x
        self.y = y
# 建立“路径”类
class Path(object):
    def __init__(self, A):                     # A为起始城市
        self.path = [A, A]
    def add_path(self, B):                     # 追加路径信息,方便计算整体路径长度
        self.path.append(B)
        self.path[-1], self.path[-2] = self.path[-2], self.path[-1]
# 构建“蚁群算法”的主体
class ACO(object):
    def __init__(self, ant_num=50, maxIter=300, alpha=1, beta=5, rho=0.1, Q=1):
        self.ants_num = ant_num   # 蚂蚁个数
        self.maxIter = maxIter    # 蚁群最大迭代次数
        self.alpha = alpha        # 信息启发式因子
        self.beta = beta          # 期望启发式因子
        self.rho = rho            # 信息素挥发速度
        self.Q = Q                # 信息素强度
        ###########################
        self.deal_data('coordinates.dat')                         # 提取所有城市的坐标信息
        ###########################
        self.path_seed = np.zeros(self.ants_num).astype(int)      # 记录一次迭代过程中每个蚂蚁的初始城市下标
        self.ants_info = np.zeros((self.maxIter, self.ants_num))  # 记录每次迭代后所有蚂蚁的路径长度信息
        self.best_path = np.zeros(self.maxIter)                   # 记录每次迭代后整个蚁群的“历史”最短路径长度
        ###########################
        self.solve()              # 完成算法的迭代更新
        self.display()            # 数据可视化展示
    def deal_data(self, filename):
        with open(filename, 'rt') as f:
            temp_list = list(line.split() for line in f)                                   # 临时存储提取出来的坐标信息
        self.cities_num = len(temp_list)                                                   # 1. 获取城市个数
        self.cities = list(City(float(item[0]), float(item[1])) for item in temp_list)     # 2. 构建城市列表
        self.city_dist_mat = np.zeros((self.cities_num, self.cities_num))                  # 3. 构建城市距离矩阵
        for i in range(self.cities_num):
            A = self.cities[i]
            for j in range(i, self.cities_num):
                B = self.cities[j]
                self.city_dist_mat[i][j] = self.city_dist_mat[j][i] = Ant.calc_len(A, B)
        self.phero_mat = np.ones((self.cities_num, self.cities_num))                       # 4. 初始化信息素矩阵
        # self.phero_upper_bound = self.phero_mat.max() * 1.2                              ###信息素浓度上限
        self.eta_mat = 1/(self.city_dist_mat + np.diag([np.inf]*self.cities_num))          # 5. 初始化启发函数矩阵
    def solve(self):
        iterNum = 0                                                            # 当前迭代次数
        while iterNum < self.maxIter:
            self.random_seed()                                                 # 使整个蚁群产生随机的起始点
            delta_phero_mat = np.zeros((self.cities_num, self.cities_num))     # 初始化每次迭代后信息素矩阵的增量
            ##########################################################################
            for i in range(self.ants_num):
                city_index1 = self.path_seed[i]                                # 每只蚂蚁访问的第一个城市下标
                ant_path = Path(self.cities[city_index1])                      # 记录每只蚂蚁访问过的城市
                tabu = [city_index1]                                           # 记录每只蚂蚁访问过的城市下标,禁忌城市下标列表
                non_tabu = list(set(range(self.cities_num)) - set(tabu))
                for j in range(self.cities_num-1):                             # 对余下的城市进行访问
                    up_proba = np.zeros(self.cities_num-len(tabu))             # 初始化状态迁移概率的分子
                    for k in range(self.cities_num-len(tabu)):
                        up_proba[k] = np.power(self.phero_mat[city_index1][non_tabu[k]], self.alpha) * \
                        np.power(self.eta_mat[city_index1][non_tabu[k]], self.beta)
                    proba = up_proba/sum(up_proba)                             # 每条可能子路径上的状态迁移概率
                    while True:                                                # 提取出下一个城市的下标
                        random_num = np.random.rand()
                        index_need = np.where(proba > random_num)[0]
                        if len(index_need) > 0:
                            city_index2 = non_tabu[index_need[0]]
                            break
                    ant_path.add_path(self.cities[city_index2])
                    tabu.append(city_index2)
                    non_tabu = list(set(range(self.cities_num)) - set(tabu))
                    city_index1 = city_index2
                self.ants_info[iterNum][i] = Ant(ant_path.path).length
                if iterNum == 0 and i == 0:                                    # 完成对最佳路径城市的记录
                    self.best_cities = ant_path.path
                else:
                    if self.ants_info[iterNum][i] < Ant(self.best_cities).length: self.best_cities = ant_path.path
                tabu.append(tabu[0])                                           # 每次迭代完成后,使禁忌城市下标列表形成完整闭环
                for l in range(self.cities_num):
                    delta_phero_mat[tabu[l]][tabu[l+1]] += self.Q/self.ants_info[iterNum][i]
            self.best_path[iterNum] = Ant(self.best_cities).length
            self.update_phero_mat(delta_phero_mat)                             # 更新信息素矩阵
            iterNum += 1
    def update_phero_mat(self, delta):
        self.phero_mat = (1 - self.rho) * self.phero_mat + delta
        # self.phero_mat = np.where(self.phero_mat > self.phero_upper_bound, self.phero_upper_bound, self.phero_mat) # 判断是否超过浓度上限
    def random_seed(self):                                                     # 产生随机的起始点下表,尽量保证所有蚂蚁的起始点不同
        if self.ants_num <= self.cities_num:                                   # 蚂蚁数 <= 城市数
            self.path_seed[:] = np.random.permutation(range(self.cities_num))[:self.ants_num]
        else:                                                                  # 蚂蚁数 > 城市数
            self.path_seed[:self.cities_num] = np.random.permutation(range(self.cities_num))
            temp_index = self.cities_num
            while temp_index + self.cities_num <= self.ants_num:
                self.path_seed[temp_index:temp_index + self.cities_num] = np.random.permutation(range(self.cities_num))
                temp_index += self.cities_num
            temp_left = self.ants_num % self.cities_num
            if temp_left != 0:
                self.path_seed[temp_index:] = np.random.permutation(range(self.cities_num))[:temp_left]
    def display(self):                                                         # 数据可视化展示
        plt.figure(figsize=(6, 10))
        plt.subplot(211)
        plt.plot(self.ants_info, 'g.')
        plt.plot(self.best_path, 'r-', label='history_best')
        plt.xlabel('Iteration')
        plt.ylabel('length')
        plt.legend()
        plt.subplot(212)
        plt.plot(list(city.x for city in self.best_cities), list(city.y for city in self.best_cities), 'g-')
        plt.plot(list(city.x for city in self.best_cities), list(city.y for city in self.best_cities), 'r.')
        plt.xlabel('x')
        plt.ylabel('y')
        plt.savefig('ACO.png', dpi=500)
        plt.show()
        plt.close()
ACO()

输出:

8d2f272bd010896583eb779c0359084e.png

88d418f60d01d34d4244b8bb0ba2f041.png

参考文献


[1]https://www.cnblogs.com/xxhbdk/p/9177423.html

[2]《matlab在数学建模中的应用》

相关文章
|
4天前
|
机器学习/深度学习 数据采集 算法
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目基于MATLAB2022a实现时间序列预测,采用CNN-GRU-SAM网络结构。卷积层提取局部特征,GRU层处理长期依赖,自注意力机制捕捉全局特征。完整代码含中文注释和操作视频,运行效果无水印展示。算法通过数据归一化、种群初始化、适应度计算、个体更新等步骤优化网络参数,最终输出预测结果。适用于金融市场、气象预报等领域。
基于GA遗传优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
|
6天前
|
机器学习/深度学习 人工智能 算法
机器学习算法的优化与改进:提升模型性能的策略与方法
机器学习算法的优化与改进:提升模型性能的策略与方法
80 13
机器学习算法的优化与改进:提升模型性能的策略与方法
|
2天前
|
移动开发 算法 计算机视觉
基于分块贝叶斯非局部均值优化(OBNLM)的图像去噪算法matlab仿真
本项目基于分块贝叶斯非局部均值优化(OBNLM)算法实现图像去噪,使用MATLAB2022A进行仿真。通过调整块大小和窗口大小等参数,研究其对去噪效果的影响。OBNLM结合了经典NLM算法与贝叶斯统计理论,利用块匹配和概率模型优化相似块的加权融合,提高去噪效率和保真度。实验展示了不同参数设置下的去噪结果,验证了算法的有效性。
|
1天前
|
算法 决策智能
基于SA模拟退火优化算法的TSP问题求解matlab仿真,并对比ACO蚁群优化算法
本项目基于MATLAB2022A,使用模拟退火(SA)和蚁群优化(ACO)算法求解旅行商问题(TSP),对比两者的仿真时间、收敛曲线及最短路径长度。SA源于金属退火过程,允许暂时接受较差解以跳出局部最优;ACO模仿蚂蚁信息素机制,通过正反馈发现最优路径。结果显示SA全局探索能力强,ACO在路径优化类问题中表现优异。
|
9天前
|
存储 算法 安全
基于红黑树的局域网上网行为控制C++ 算法解析
在当今网络环境中,局域网上网行为控制对企业和学校至关重要。本文探讨了一种基于红黑树数据结构的高效算法,用于管理用户的上网行为,如IP地址、上网时长、访问网站类别和流量使用情况。通过红黑树的自平衡特性,确保了高效的查找、插入和删除操作。文中提供了C++代码示例,展示了如何实现该算法,并强调其在网络管理中的应用价值。
|
6天前
|
传感器 算法
基于GA遗传优化的WSN网络最优节点部署算法matlab仿真
本项目基于遗传算法(GA)优化无线传感器网络(WSN)的节点部署,旨在通过最少的节点数量实现最大覆盖。使用MATLAB2022A进行仿真,展示了不同初始节点数量(15、25、40)下的优化结果。核心程序实现了最佳解获取、节点部署绘制及适应度变化曲线展示。遗传算法通过初始化、选择、交叉和变异步骤,逐步优化节点位置配置,最终达到最优覆盖率。
|
6天前
|
算法
基于RRT优化算法的机械臂路径规划和避障matlab仿真
本课题基于RRT优化算法实现机械臂路径规划与避障。通过MATLAB2022a进行仿真,先利用RRT算法计算避障路径,再将路径平滑处理,并转换为机械臂的关节角度序列,确保机械臂在复杂环境中无碰撞移动。系统原理包括随机生成树结构探索空间、直线扩展与障碍物检测等步骤,最终实现高效路径规划。
|
3天前
|
算法 数据安全/隐私保护
室内障碍物射线追踪算法matlab模拟仿真
### 简介 本项目展示了室内障碍物射线追踪算法在无线通信中的应用。通过Matlab 2022a实现,包含完整程序运行效果(无水印),支持增加发射点和室内墙壁设置。核心代码配有详细中文注释及操作视频。该算法基于几何光学原理,模拟信号在复杂室内环境中的传播路径与强度,涵盖场景建模、射线发射、传播及接收点场强计算等步骤,为无线网络规划提供重要依据。
|
16天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
151 80
|
4天前
|
算法
基于龙格库塔算法的锅炉单相受热管建模与matlab数值仿真
本设计基于龙格库塔算法对锅炉单相受热管进行建模与MATLAB数值仿真,简化为喷水减温器和末级过热器组合,考虑均匀传热及静态烟气处理。使用MATLAB2022A版本运行,展示自编与内置四阶龙格库塔法的精度对比及误差分析。模型涉及热传递和流体动力学原理,适用于优化锅炉效率。

推荐镜像

更多