复习篇【时间复杂度与空间复杂度】

简介: 复习篇【时间复杂度与空间复杂度】

算法效率:


算法效率分析分为两种:第一种是时间效率,第二种是空间效率

时间效率被称为时间复杂度,而空间效率被称作空间复杂度

时间复杂度主要衡量的是一个算法的运行速度,而空间复杂度主要衡量一个算法所需要的额外空间,在计算机发展的早期,计算机的存储容量很小。所以对空间复杂度很是在乎。但是经过计算机行业的迅速发展,计算机的存储容量已经达到了很高的程度。所以我们如今已经不需要再特别关注一个算法的空间复杂度


🍎一.时间复杂度


🍒1.1 时间复杂度的概念


时间复杂度的定义:在计算机科学中,算法的时间复杂度是一个函数,它定量描述了该算法的运行时间。一个算法执行所耗费的时间,从理论上说,是不能算出来的,只有你把你的程序放在机器上跑起来,才能知道。但是我们需要每个算法都上机测试吗?是可以都上机测试,但是这很麻烦,所以才有了时间复杂度这个分析方式。


一个算法所花费的时间与其中语句的执行次数成正比例,算法中的基本操作的执行次数,为算法的时间复杂度


🍒1.2 大O的渐进表示法


 // 请计算一下func1基本操作执行了多少次?
    void func1(int N) {
        int count = 0;
        for (int i = 0; i < N; i++) {
            for (int j = 0; j < N; j++) {
                count++;
            }
        }
        for (int k = 0; k < 2 * N; k++) {
            count++;
        }
        int M = 10;
        while ((M--) > 0) {
            count++;
        }
        System.out.println(count);
    }



F(N) = N^2 + N +10

这里F(N)就可以约等于 N^2


Func1 执行的基本操作次数 :

N = 10 F(N) = 130

N = 100 F(N) = 10210

N = 1000 F(N) = 1002010

实际中我们计算时间复杂度时,我们其实并不一定要计算精确的执行次数,而只需要大概执行次数通过上面我们会发现大O的渐进表示法去掉了那些对结果影响不大的项,简洁明了的表示出了执行次数


另外有些算法的时间复杂度存在最好、平均和最坏情况:

最坏情况:任意输入规模的最大运行次数(上界)

平均情况:任意输入规模的期望运行次数

最好情况:任意输入规模的最小运行次数(下界)


例如:在一个长度为N数组中搜索一个数据x

最好情况:1次找到

最坏情况:N次找到

平均情况:N/2次找到


🍒1.3 计算未知数算法


 // 计算func2的时间复杂度?
    void func2(int N) {
        int count = 0;
        for (int k = 0; k < 2 * N ; k++) {
            count++;
        }
        int M = 10;
        while ((M--) > 0) {
            count++;
        }
        System.out.println(count);
    }

基本操作执行了M+N次,有两个未知数M和N,时间复杂度为 O(N+M)


🍒1.4 计算冒泡排序时间复杂度

 // 计算bubbleSort的时间复杂度?
    void bubbleSort(int[] array) {
        for (int end = array.length; end > 0; end--) {
            boolean sorted = true;
            for (int i = 1; i < end; i++) {
                if (array[i - 1] > array[i]) {
                    Swap(array, i - 1, i);
                    sorted = false;
                }
            }
            if (sorted == true) {
                break;
            }
        }
    }

基本操作执行最好N次,最坏执行了(N*(N-1))/2次,通过推导大O阶方法+时间复杂度一般看最坏,时间复杂度为 O(N^2)


🍒1.5 计算递归的时间复杂度

// 计算阶乘递归factorial的时间复杂度?
    long factorial(int N) {
        return N < 2 ? N : factorial(N-1) * N;
    }

通过计算分析发现基本操作递归了N次,时间复杂度为O(N)


// 计算斐波那契递归fibonacci的时间复杂度?
int fibonacci(int N) {
return N < 2 ? N : fibonacci(N-1)+fibonacci(N-2);
}

7557aa2334c54f2ea5cb6ea6545631fb.png

79d019b0505c4d4f865f16a30d4d2ea7.png


通过计算分析发现基本操作递归了2N次,时间复杂度为O(2N)


🍒1.6 计算二分查找的时间复杂度

 // 计算binarySearch的时间复杂度?
    int binarySearch(int[] array, int value) {
        int begin = 0;
        int end = array.length - 1;
        while (begin <= end) {
            int mid = begin + ((end-begin) / 2);
            if (array[mid] < value)
                begin = mid + 1;
            else if (array[mid] > value)
                end = mid - 1;
            else
                return mid;
        }
        return -1;
    }

基本操作执行最好1次,最坏O(logN)次,时间复杂度为 O(logN)

(因为二分查找每次排除掉一半的不适合值,一次二分剩下:n/2 两次二分剩下:n/2/2 = n/4)


🍎二.空间复杂度


空间复杂度是对一个算法在运行过程中临时占用存储空间大小的量度 。空间复杂度不是程序占用了多少bytes的空间,因为这个也没太大意义,所以空间复杂度算的是变量的个数。空间复杂度计算规则基本跟实践复杂度类似,也使用大O渐进表示法。


🍒2.1 冒泡排序的空间复杂度


void bubbleSort(int[] array) {
        for (int end = array.length; end > 0; end--) {
            boolean sorted = true;
            for (int i = 1; i < end; i++) {
                if (array[i - 1] > array[i]) {
                    Swap(array, i - 1, i);
                    sorted = false;
                }
            }
            if (sorted == true) {
                break;
            }
        }
    }

冒泡排序 使用了常数个额外空间,所以空间复杂度为 O(1)


🍒2.2 斐波那契的空间复杂度


  int[] fibonacci(int n) {
        long[] fibArray = new long[n + 1];
        fibArray[0] = 0;
        fibArray[1] = 1;
        for (int i = 2; i <= n ; i++) {
            fibArray[i] = fibArray[i - 1] + fibArray [i - 2];
        }
        return fibArray;
    }


斐波那契 动态开辟了N个空间,空间复杂度为 O(N)


🍒2.3 阶乘递归的空间复杂度

long factorial(int N) {
   return N < 2 ? N : factorial(N-1)*N;
}


阶乘递归 递归调用了N次,开辟了N个栈帧,每个栈帧使用了常数个空间。空间复杂度为O(N)

相关文章
|
2月前
|
机器学习/深度学习 存储 缓存
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
文章主要介绍了排序算法的分类、时间复杂度的概念和计算方法,以及常见的时间复杂度级别,并简单提及了空间复杂度。
47 1
数据结构与算法学习十:排序算法介绍、时间频度、时间复杂度、常用时间复杂度介绍
|
6月前
|
算法 C++
【数据结构与算法】:关于时间复杂度与空间复杂度的计算(C/C++篇)——含Leetcode刷题-1
【数据结构与算法】:关于时间复杂度与空间复杂度的计算(C/C++篇)——含Leetcode刷题
|
6月前
|
算法 C++
【数据结构与算法】:关于时间复杂度与空间复杂度的计算(C/C++篇)——含Leetcode刷题-2
【数据结构与算法】:关于时间复杂度与空间复杂度的计算(C/C++篇)——含Leetcode刷题
|
存储 算法
【数据结构与算法】时间复杂度与空间复杂度(下)
【数据结构与算法】时间复杂度与空间复杂度(下)
53 0
|
算法
【基础知识整理】时间复杂度 & 空间复杂度
时间复杂度与空间复杂度的作用是在衡量一个算法的优劣性,以及在二者之间进行权衡,寻找二者的平衡点。
|
7月前
|
算法
【数据结构与算法】2.时间复杂度和空间复杂度
【数据结构与算法】2.时间复杂度和空间复杂度
|
7月前
|
算法 搜索推荐 Java
数据结构与算法面试:基于比较的排序算法时间复杂度最坏情况下是 O(nlogn),请问有没有更快的算法?(提示:计数排序、基数排序)
数据结构与算法面试:基于比较的排序算法时间复杂度最坏情况下是 O(nlogn),请问有没有更快的算法?(提示:计数排序、基数排序)
55 0
|
机器学习/深度学习 算法
深入浅出理解:算法的时间复杂度和空间复杂度
深入浅出理解:算法的时间复杂度和空间复杂度
67 0
时间复杂度空间复杂度相关练习题
时间复杂度空间复杂度相关练习题
59 0
时间复杂度和空间复杂度+剑指offer习题(二)
时间复杂度和空间复杂度+剑指offer习题(二)