注意力机制BAM和CBAM详细解析(附代码)

本文涉及的产品
全局流量管理 GTM,标准版 1个月
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
云解析 DNS,旗舰版 1个月
简介: 注意力机制BAM和CBAM详细解析(附代码)
  • 论文题目①:BAM: Bottleneck Attention Module
  • 论文题目②:CBAM:CBAM: Convolutional Block Attention Module

Bottlenet attention Module(BAM)


依据


人看东西时不可能把注意力放在所有的图像上,会把焦点目光聚集在图像的重要物体上。因此,作者提出了BAM注意力机制,仿照人的眼睛聚焦在图像几个重要的点上。

BAM介绍


在这项工作中,我们把重心放在了Attention对于一般深度神经网络的影响上,我们提出了一个简单但是有效的Attention模型—BAM,它可以结合到任何前向传播卷积神经网络中,我们的模型通过两个分离的路径 channel和spatial, 得到一个Attention Map。

3235cf914ca73016c062ae61c151bb14.png

BAM具体结构


image.png

channel attention branch

image.png

spatial attention branch

image.png

两种attention的结合方式


由一系列的实验可得,element-wise summation即逐元素相加perform是最好的。最后再通过sigmoid函数。具体可以参照下图:

045899e8b6d90ed96b7cb57d7a39da62.png

Convolutional Block Attention Module(CBAM)


简介


作者提出了一个简单但有效的注意力模块 CBAM,给定一个中间特征图,我们沿着空间和通道两个维度依次推断出注意力权重,然后与原特征图相乘来对特征进行自适应调整。由于 CBAM 是一个轻量级的通用模块,它可以无缝地集成到任何 CNN 架构中,额外开销忽略不计,并且可以与基本 CNN 一起进行端到端的训练。在不同的分类和检测数据集上,将 CBAM 集成到不同的模型中后,模型的表现都有了一致的提升,展示了其广泛的可应用性。

CBAM总体视图


7572e09851ce68d317cc02783d1105b1.png

CBAM结构介绍


作者将注意力过程分为两个独立的部分,通道注意力模块和空间注意力模块。这样不仅可以节约参数和计算力,而且保证了其可以作为即插即用的模块集成到现有的网络架构中去。

通道注意力模块


特征的每一个通道都代表着一个专门的检测器,因此,通道注意力是关注什么样的特征是有意义的。为了汇总空间特征,作者采用了全局平均池化和最大池化两种方式来分别利用不同的信息。

image.png

输入是一个 H×W×C 的特征 F,我们先分别进行一个空间的全局平均池化和最大池化得到两个 1×1×C 的通道描述。接着,再将它们分别送入一个两层的神经网络,第一层神经元个数为 C/r,激活函数为 Relu,第二层神经元个数为 C。这个两层的神经网络是共享的。然后,再将得到的两个特征相加后经过一个 Sigmoid 激活函数得到权重系数 Mc。最后,拿权重系数和原来的特征 F 相乘即可得到缩放后的新特征。

空间注意力模块


在通道注意力模块之后,我们再引入空间注意力模块来关注哪里的特征是有意义的。

image.png

与通道注意力相似,给定一个 H×W×C 的特征 F‘,我们先分别进行一个通道维度的平均池化和最大池化得到两个 H×W×1 的通道描述,并将这两个描述按照通道拼接在一起。然后,经过一个 7×7 的卷积层,激活函数为 Sigmoid,得到权重系数 Ms。最后,拿权重系数和特征 F’ 相乘即可得到缩放后的新特征。

f989d47c9cf451679f71f91e9e76f289.png

两个注意力通道组合形式


通道注意力和空间注意力这两个模块可以以并行或者顺序的方式组合在一起,但是作者发现顺序组合并且将通道注意力放在前面可以取得更好的效果。

实验结果


CBAM与ResNet网络结构组合


ba97e93ff0de9a718dcaed73a2e2dd69.png

1e31f8c09bdb540ef24cecde19dd88d9.png

CBAM可视化


736b2fbe99d7fb108cd521f97f3a4e20.png

利用 Grad-CAM 对不同的网络进行可视化后,可以发现,引入 CBAM 后,特征覆盖到了待识别物体的更多部位,并且最终判别物体的概率也更高,这表明注意力机制的确让网络学会了关注重点信息。

BAM在目标检测


af33801a1fb52f25189e551290be06a7.png

结论(CBAM和BAM)


由上述及论文更多实验结果表明,不管是引入BAM还是引入CBAM都能提高目标检测和物体分类的精度,因此可以在神经网络中引入这一机制,而且花费的计算开销和参数大小都比较少。

代码解析及开源地址


https://github.com/Jongchan/attention-module

可对照着代码看注意力机制的详细过程,会有一个更好的理解。

相关文章
|
2月前
|
监控 Java 应用服务中间件
高级java面试---spring.factories文件的解析源码API机制
【11月更文挑战第20天】Spring Boot是一个用于快速构建基于Spring框架的应用程序的开源框架。它通过自动配置、起步依赖和内嵌服务器等特性,极大地简化了Spring应用的开发和部署过程。本文将深入探讨Spring Boot的背景历史、业务场景、功能点以及底层原理,并通过Java代码手写模拟Spring Boot的启动过程,特别是spring.factories文件的解析源码API机制。
96 2
|
3月前
|
存储 缓存 算法
分布式锁服务深度解析:以Apache Flink的Checkpointing机制为例
【10月更文挑战第7天】在分布式系统中,多个进程或节点可能需要同时访问和操作共享资源。为了确保数据的一致性和系统的稳定性,我们需要一种机制来协调这些进程或节点的访问,避免并发冲突和竞态条件。分布式锁服务正是为此而生的一种解决方案。它通过在网络环境中实现锁机制,确保同一时间只有一个进程或节点能够访问和操作共享资源。
119 3
|
1月前
|
PHP 开发者 UED
PHP中的异常处理机制解析####
本文深入探讨了PHP中的异常处理机制,通过实例解析try-catch语句的用法,并对比传统错误处理方式,揭示其在提升代码健壮性与可维护性方面的优势。文章还简要介绍了自定义异常类的创建及其应用场景,为开发者提供实用的技术参考。 ####
|
2月前
|
存储 缓存 监控
后端开发中的缓存机制:深度解析与最佳实践####
本文深入探讨了后端开发中不可或缺的一环——缓存机制,旨在为读者提供一份详尽的指南,涵盖缓存的基本原理、常见类型(如内存缓存、磁盘缓存、分布式缓存等)、主流技术选型(Redis、Memcached、Ehcache等),以及在实际项目中如何根据业务需求设计并实施高效的缓存策略。不同于常规摘要的概述性质,本摘要直接点明文章将围绕“深度解析”与“最佳实践”两大核心展开,既适合初学者构建基础认知框架,也为有经验的开发者提供优化建议与实战技巧。 ####
|
2月前
|
缓存 NoSQL Java
千万级电商线上无阻塞双buffer缓冲优化ID生成机制深度解析
【11月更文挑战第30天】在千万级电商系统中,ID生成机制是核心基础设施之一。一个高效、可靠的ID生成系统对于保障系统的稳定性和性能至关重要。本文将深入探讨一种在千万级电商线上广泛应用的ID生成机制——无阻塞双buffer缓冲优化方案。本文从概述、功能点、背景、业务点、底层原理等多个维度进行解析,并通过Java语言实现多个示例,指出各自实践的优缺点。希望给需要的同学提供一些参考。
52 7
|
1月前
|
Java 数据库连接 开发者
Java中的异常处理机制:深入解析与最佳实践####
本文旨在为Java开发者提供一份关于异常处理机制的全面指南,从基础概念到高级技巧,涵盖try-catch结构、自定义异常、异常链分析以及最佳实践策略。不同于传统的摘要概述,本文将以一个实际项目案例为线索,逐步揭示如何高效地管理运行时错误,提升代码的健壮性和可维护性。通过对比常见误区与优化方案,读者将获得编写更加健壮Java应用程序的实用知识。 --- ####
|
2月前
|
Java 开发者 Spring
深入解析:Spring AOP的底层实现机制
在现代软件开发中,Spring框架的AOP(面向切面编程)功能因其能够有效分离横切关注点(如日志记录、事务管理等)而备受青睐。本文将深入探讨Spring AOP的底层原理,揭示其如何通过动态代理技术实现方法的增强。
81 8
|
2月前
|
机器学习/深度学习 自然语言处理 语音技术
揭秘深度学习中的注意力机制:兼容性函数的深度解析
揭秘深度学习中的注意力机制:兼容性函数的深度解析
|
2月前
|
Java 测试技术 API
Java 反射机制:深入解析与应用实践
《Java反射机制:深入解析与应用实践》全面解析Java反射API,探讨其内部运作原理、应用场景及最佳实践,帮助开发者掌握利用反射增强程序灵活性与可扩展性的技巧。
136 4
|
2月前
|
存储 消息中间件 算法
深入探索操作系统的心脏——内核机制解析
本文旨在揭示操作系统核心——内核的工作原理,通过剖析其关键组件与机制,为读者提供一个清晰的内核结构图景。不同于常规摘要的概述性内容,本文摘要将直接聚焦于内核的核心概念、主要功能以及其在系统管理中扮演的角色,旨在激发读者对操作系统深层次运作原理的兴趣与理解。

推荐镜像

更多
下一篇
开通oss服务