经典神经网络 | GoogleNet 论文解析及代码实现

本文涉及的产品
公共DNS(含HTTPDNS解析),每月1000万次HTTP解析
全局流量管理 GTM,标准版 1个月
云解析 DNS,旗舰版 1个月
简介: 经典神经网络 | GoogleNet 论文解析及代码实现

157c14dd29db3565e580133a18c84549.png

论文研究目标


利用赫布理论和多尺度处理直觉设计一种增加深度和宽度的提高内部计算资源利用率的(同时保持了计算预算不变)网络。GoogleNet在ImageNet分类比赛的Top-5错误率降到了6.7%。

创新点


  • 提出Inception模块
  • 使用辅助Loss
  • 全连接层使用简单的平均池化代替

网络主要结构


138a3b3c4fcbfd7718c3122530ac66cd.jpg

图一  网络总体架构

上图为主要包含Inception块+辅助分类器的GoogLeNet结构示意图。

Inception模块


07a80b0b161ebd3a157dad1d465ccf98.jpg

上图为Inception块示意图 (a)为普通的Inception块;(b)为带有1×1卷积的,可以对输入通道降维的Inception块

Inception模块特点


  1. 由Inception基础块组成。
  2. Inception块相当于⼀个有4条线路的⼦⽹络。它通过不同窗口形状的卷积层和最⼤池化层来并⾏抽取信息,并使⽤1×1卷积层减少通道数从而降低模型复杂度。
  3. 可以⾃定义的超参数是每个层的输出通道数,我们以此来控制模型复杂度。

371ac25cc9e41aee3cfd4276d9d52e1c.png

针对同一个输入层,在Inception块中有四条并行的线路,其中前1~3个是1×1卷积层,第4个是一个MaxPooling池化层,这四条线路最后的输出拥有相同的shape和不同的channel通道数。于是,这些输出最后可在channel维度进行合并。例如:28×28×64,28×28×128,28×28×32,28×28×32。通道合并层的shape:28×28×256(64+128+32+32)。

举例分析加入1*1卷积核设计的好处:

假设输入时256个feature map进来,256个feature map输出,假设Inception层只执行3x3的卷积,那么这就需要执行 (256x256) x (3x3) 次乘法(大约589,000次计算操作)。现在Bottleneck layer的思想是先来减少特征的数量,我们首先执行256 -> 64 的1×1卷积,然后在所有Bottleneck layer的分支上对64大小的feature map进行卷积,最后再64 -> 256 1x1卷积。

操作量是:

256×64 × 1×1 = 16,384      64x1x1卷积核对上一层输出卷积计算

64×256 × 3×3= 147456      256x3x3卷积核对1x1卷积输出进行卷积计算

总共约163840,而我们以前有近600,000。减少3倍多的操作。

layer设计


GoogLeNet是作者团队在参加2014大规模视觉挑战赛时送去参加的几种Inception结构的模型之一。该网络设计时考虑了计算效率和实用性,故可以在单个设备上运行推理,对低内存设备比较友好。整个网络使用了9个Inception块,结构排布如表格中所示:

e75f0d3ac974f778069cca2f9569683a.jpg

训练方法


模型训练采用了DistBelief分布式机器学习系统对GoogleNet进行了训练(CPU)。论文表示使用高端GPU,可以在1周内完成模型的训练。训练采用了0.9动量的异步随机梯度下降,固定学习率(每8个迭代学习率降低4%),另外使用各个各个尺寸的图片(数据增强)对于降低过拟合很有用。

总结&实验结果


作者在论文中表示,用现有的dense结构来组合构建出最佳的稀疏结构,是改善计算机视觉神经网络的可行方法。与较浅和较窄的网络结构相比,该方法的优点在于计算量适度增加的情况下显著提高网络效果。在目标检测领域,尽管没有利用上下文和bounding box回归,我们的效果还是很好,进一步表面Inception结构的优越性,未来将在此基础上继续研究更加精细和自动化地方式来创造稀疏结构用以促进各领域的工作。

e1852f18c81e074feff7c9e5e41bb999.png

代码实现如下图的GoogLenet网络


a13c2d65ade5c42e7342d1e598ef0b70.png

构建Inception基本模块

class Inception(nn.Module):
    # c1 - c4为每条线路里的层的输出通道数
    def __init__(self, in_c, c1, c2, c3, c4):
        super(Inception, self).__init__()
        # 线路1,单1 x 1卷积层
        self.p1_1 = nn.Conv2d(in_c, c1, kernel_size=1)
        # 线路2,1 x 1卷积层后接3 x 3卷积层
        self.p2_1 = nn.Conv2d(in_c, c2[0], kernel_size=1)
        self.p2_2 = nn.Conv2d(c2[0], c2[1], kernel_size=3, padding=1)
        # 线路3,1 x 1卷积层后接5 x 5卷积层
        self.p3_1 = nn.Conv2d(in_c, c3[0], kernel_size=1)
        self.p3_2 = nn.Conv2d(c3[0], c3[1], kernel_size=5, padding=2)
        # 线路4,3 x 3最大池化层后接1 x 1卷积层
        self.p4_1 = nn.MaxPool2d(kernel_size=3, stride=1, padding=1)
        self.p4_2 = nn.Conv2d(in_c, c4, kernel_size=1)
    def forward(self, x):
        p1 = F.relu(self.p1_1(x))
        p2 = F.relu(self.p2_2(F.relu(self.p2_1(x))))
        p3 = F.relu(self.p3_2(F.relu(self.p3_1(x))))
        p4 = F.relu(self.p4_2(self.p4_1(x)))
        return torch.cat((p1, p2, p3, p4), dim=1)  # 在通道维上连结输出
总体实现
b1 = nn.Sequential(nn.Conv2d(1, 64, kernel_size=7, stride=2, padding=3),
                   nn.ReLU(),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
b2 = nn.Sequential(nn.Conv2d(64, 64, kernel_size=1),
                   nn.Conv2d(64, 192, kernel_size=3, padding=1),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
b3 = nn.Sequential(Inception(192, 64, (96, 128), (16, 32), 32),
                   Inception(256, 128, (128, 192), (32, 96), 64),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
b4 = nn.Sequential(Inception(480, 192, (96, 208), (16, 48), 64),
                   Inception(512, 160, (112, 224), (24, 64), 64),
                   Inception(512, 128, (128, 256), (24, 64), 64),
                   Inception(512, 112, (144, 288), (32, 64), 64),
                   Inception(528, 256, (160, 320), (32, 128), 128),
                   nn.MaxPool2d(kernel_size=3, stride=2, padding=1))
b5 = nn.Sequential(Inception(832, 256, (160, 320), (32, 128), 128),
                   Inception(832, 384, (192, 384), (48, 128), 128),
                   d2l.GlobalAvgPool2d())
net = nn.Sequential(b1, b2, b3, b4, b5, 
                    d2l.FlattenLayer(), nn.Linear(1024, 10))
net = nn.Sequential(b1, b2, b3, b4, b5, d2l.FlattenLayer(), nn.Linear(1024, 10))
X = torch.rand(1, 1, 96, 96)
for blk in net.children(): 
    X = blk(X)
    print('output shape: ', X.shape)
#batchsize=128
batch_size = 16
# 如出现“out of memory”的报错信息,可减小batch_size或resize
#train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, resize=96)
lr, num_epochs = 0.001, 5
optimizer = torch.optim.Adam(net.parameters(), lr=lr)
d2l.train_ch5(net, train_iter, test_iter, batch_size, optimizer, device
相关文章
|
11天前
|
搜索推荐 UED Python
实现一个带有昼夜背景切换的动态时钟:从代码到功能解析
本文介绍了一个使用Python和Tkinter库实现的动态时钟程序,具有昼夜背景切换、指针颜色随机变化及整点和半点报时功能。通过设置不同的背景颜色和随机变换指针颜色,增强视觉吸引力;利用多线程技术确保音频播放不影响主程序运行。该程序结合了Tkinter、Pygame、Pytz等库,提供了一个美观且实用的时间显示工具。欢迎点赞、关注、转发、收藏!
127 94
|
9天前
|
监控 安全 网络安全
深入解析PDCERF:网络安全应急响应的六阶段方法
PDCERF是网络安全应急响应的六阶段方法,涵盖准备、检测、抑制、根除、恢复和跟进。本文详细解析各阶段目标与操作步骤,并附图例,助读者理解与应用,提升组织应对安全事件的能力。
164 89
|
1天前
|
机器学习/深度学习 人工智能 搜索推荐
PaSa:字节跳动开源学术论文检索智能体,自动调用搜索引擎、浏览相关论文并追踪引文网络
PaSa 是字节跳动推出的基于强化学习的学术论文检索智能体,能够自动调用搜索引擎、阅读论文并追踪引文网络,帮助用户快速获取精准的学术文献。
45 14
|
11天前
|
SQL Java 数据库连接
如何在 Java 代码中使用 JSqlParser 解析复杂的 SQL 语句?
大家好,我是 V 哥。JSqlParser 是一个用于解析 SQL 语句的 Java 库,可将 SQL 解析为 Java 对象树,支持多种 SQL 类型(如 `SELECT`、`INSERT` 等)。它适用于 SQL 分析、修改、生成和验证等场景。通过 Maven 或 Gradle 安装后,可以方便地在 Java 代码中使用。
129 11
|
8天前
|
负载均衡 芯片 异构计算
NSDI'24 | 阿里云飞天洛神云网络论文解读——《LuoShen》揭秘新型融合网关 洛神云网关
NSDI‘24于4月16-18日在美国圣塔克拉拉市举办,阿里云飞天洛神云网络首次中稿NSDI,两篇论文入选。其中《LuoShen: A Hyper-Converged Programmable Gateway for Multi-Tenant Multi-Service Edge Clouds》提出超融合网关LuoShen,基于Tofino、FPGA和CPU的新型硬件形态,将公有云VPC设施部署到边缘机柜中,实现小型化、低成本和高性能。该方案使成本降低75%,空间占用减少87%,并提供1.2Tbps吞吐量,展示了强大的技术竞争力。
|
1月前
|
自然语言处理 搜索推荐 数据安全/隐私保护
鸿蒙登录页面好看的样式设计-HarmonyOS应用开发实战与ArkTS代码解析【HarmonyOS 5.0(Next)】
鸿蒙登录页面设计展示了 HarmonyOS 5.0(Next)的未来美学理念,结合科技与艺术,为用户带来视觉盛宴。该页面使用 ArkTS 开发,支持个性化定制和无缝智能设备连接。代码解析涵盖了声明式 UI、状态管理、事件处理及路由导航等关键概念,帮助开发者快速上手 HarmonyOS 应用开发。通过这段代码,开发者可以了解如何构建交互式界面并实现跨设备协同工作,推动智能生态的发展。
147 10
鸿蒙登录页面好看的样式设计-HarmonyOS应用开发实战与ArkTS代码解析【HarmonyOS 5.0(Next)】
|
8天前
|
SQL Cloud Native API
NSDI'24 | 阿里云飞天洛神云网络论文解读——《Poseidon》揭秘新型超高性能云网络控制器
NSDI‘24于4月16-18日在美国加州圣塔克拉拉市举办,汇聚全球网络系统领域的专家。阿里云飞天洛神云网络的两篇论文入选,标志着其创新能力获广泛认可。其中,《Poseidon: A Consolidated Virtual Network Controller that Manages Millions of Tenants via Config Tree》介绍了波塞冬平台,该平台通过统一控制器架构、高性能配置计算引擎等技术,实现了对超大规模租户和设备的高效管理,显著提升了云网络性能与弹性。实验结果显示,波塞冬在启用EIP时的完成时间比Top 5厂商分别快1.8至55倍和2.6至4.8倍。
|
1月前
|
机器学习/深度学习 人工智能 算法
深入解析图神经网络:Graph Transformer的算法基础与工程实践
Graph Transformer是一种结合了Transformer自注意力机制与图神经网络(GNNs)特点的神经网络模型,专为处理图结构数据而设计。它通过改进的数据表示方法、自注意力机制、拉普拉斯位置编码、消息传递与聚合机制等核心技术,实现了对图中节点间关系信息的高效处理及长程依赖关系的捕捉,显著提升了图相关任务的性能。本文详细解析了Graph Transformer的技术原理、实现细节及应用场景,并通过图书推荐系统的实例,展示了其在实际问题解决中的强大能力。
233 30
|
1月前
|
网络协议
TCP报文格式全解析:网络小白变高手的必读指南
本文深入解析TCP报文格式,涵盖源端口、目的端口、序号、确认序号、首部长度、标志字段、窗口大小、检验和、紧急指针及选项字段。每个字段的作用和意义详尽说明,帮助理解TCP协议如何确保可靠的数据传输,是互联网通信的基石。通过学习这些内容,读者可以更好地掌握TCP的工作原理及其在网络中的应用。
|
1月前
|
网络协议 安全 网络安全
探索网络模型与协议:从OSI到HTTPs的原理解析
OSI七层网络模型和TCP/IP四层模型是理解和设计计算机网络的框架。OSI模型包括物理层、数据链路层、网络层、传输层、会话层、表示层和应用层,而TCP/IP模型则简化为链路层、网络层、传输层和 HTTPS协议基于HTTP并通过TLS/SSL加密数据,确保安全传输。其连接过程涉及TCP三次握手、SSL证书验证、对称密钥交换等步骤,以保障通信的安全性和完整性。数字信封技术使用非对称加密和数字证书确保数据的机密性和身份认证。 浏览器通过Https访问网站的过程包括输入网址、DNS解析、建立TCP连接、发送HTTPS请求、接收响应、验证证书和解析网页内容等步骤,确保用户与服务器之间的安全通信。
117 3

热门文章

最新文章

推荐镜像

更多