PolarDB 开源版 使用TimescaleDB 实现时序数据高速写入、压缩、实时聚合计算、自动老化等

本文涉及的产品
云原生数据库 PolarDB MySQL 版,通用型 2核4GB 50GB
云原生数据库 PolarDB PostgreSQL 版,标准版 2核4GB 50GB
简介: PolarDB 开源版 使用TimescaleDB 实现时序数据高速写入、压缩、实时聚合计算、自动老化等

背景

PolarDB 的云原生存算分离架构, 具备低廉的数据存储、高效扩展弹性、高速多机并行计算能力、高速数据搜索和处理; PolarDB与计算算法结合, 将实现双剑合璧, 推动业务数据的价值产出, 将数据变成生产力.

本文将介绍PolarDB 开源版 使用TimescaleDB 实现时序数据高速写入、压缩、实时聚合计算、自动老化等

测试环境为macOS+docker, PolarDB部署请参考下文:

Timescale DB 部署

目前PolarDB 开源版本兼容PG 11, 所以只能使用TimescaleDB 1.7.x的版本, 未来PolarDB升级到14后, 可以使用TimescaleDB 2.x的版本.

cd ~  
  
git clone -b 1.7.x --depth 1 https://github.com/timescale/timescaledb  
cd timescaledb  
  
./bootstrap  -DREGRESS_CHECKS=OFF  
  
cd build && make  
  
sudo make install  

修改polardb配置

vi ~/tmp_master_dir_polardb_pg_1100_bld/postgresql.conf  
  
vi ~/tmp_replica_dir_polardb_pg_1100_bld1/postgresql.conf  
vi ~/tmp_replica_dir_polardb_pg_1100_bld2/postgresql.conf  
  
shared_preload_libraries = 'timescaledb,......'  

更多的参数配置和优化建议参考:

使用TimescaleDB

postgres=# create extension timescaledb ;  
WARNING:   
WELCOME TO  
 _____ _                               _     ____________    
|_   _(_)                             | |    |  _  \ ___ \   
  | |  _ _ __ ___   ___  ___  ___ __ _| | ___| | | | |_/ /   
  | | | |  _ ` _ \ / _ \/ __|/ __/ _` | |/ _ \ | | | ___ \   
  | | | | | | | | |  __/\__ \ (_| (_| | |  __/ |/ /| |_/ /  
  |_| |_|_| |_| |_|\___||___/\___\__,_|_|\___|___/ \____/  
               Running version 1.7.4  
For more information on TimescaleDB, please visit the following links:  
  
 1. Getting started: https://docs.timescale.com/getting-started  
 2. API reference documentation: https://docs.timescale.com/api  
 3. How TimescaleDB is designed: https://docs.timescale.com/introduction/architecture  
  
Note: TimescaleDB collects anonymous reports to better understand and assist our users.  
For more information and how to disable, please see our docs https://docs.timescaledb.com/using-timescaledb/telemetry.  
  
CREATE EXTENSION  
postgres=# \dx  
                                      List of installed extensions  
    Name     | Version |   Schema   |                            Description                              
-------------+---------+------------+-------------------------------------------------------------------  
 plpgsql     | 1.0     | pg_catalog | PL/pgSQL procedural language  
 postgis     | 3.3.2   | public     | PostGIS geometry and geography spatial types and functions  
 timescaledb | 1.7.5   | public     | Enables scalable inserts and complex queries for time-series data  
(3 rows)  

创建普通时序表

-- We start by creating a regular SQL table  
  
CREATE TABLE conditions (  
  time        TIMESTAMPTZ       NOT NULL,  
  location    TEXT              NOT NULL,  
  temperature DOUBLE PRECISION  NULL,  
  humidity    DOUBLE PRECISION  NULL  
);  

将普通表转化为timescale时序表

-- This creates a hypertable that is partitioned by time  
--   using the values in the `time` column.  
  
SELECT create_hypertable('conditions', 'time');  

写入测试数据

INSERT INTO conditions(time, location, temperature, humidity)  
  VALUES (NOW(), 'office', 70.0, 50.0);  

查询时序表基表内容

SELECT * FROM conditions ORDER BY time DESC LIMIT 100;  

基表自动分片存储

postgres=# \d+ conditions  
                                            Table "public.conditions"  
   Column    |           Type           | Collation | Nullable | Default | Storage  | Stats target | Description   
-------------+--------------------------+-----------+----------+---------+----------+--------------+-------------  
 time        | timestamp with time zone |           | not null |         | plain    |              |   
 location    | text                     |           | not null |         | extended |              |   
 temperature | double precision         |           |          |         | plain    |              |   
 humidity    | double precision         |           |          |         | plain    |              |   
Indexes:  
    "conditions_time_idx" btree ("time" DESC)  
Triggers:  
    ts_insert_blocker BEFORE INSERT ON conditions FOR EACH ROW EXECUTE PROCEDURE _timescaledb_internal.insert_blocker()  
Child tables: _timescaledb_internal._hyper_1_1_chunk  
INSERT INTO conditions(time, location, temperature, humidity)   
select now()+(id||' second')::interval,   
  md5((random()*1000)::int::text),   
  random()*100, random()*100   
  from generate_series(1,1000000) id;  
  
  
postgres=# \d+ conditions  
                                            Table "public.conditions"  
   Column    |           Type           | Collation | Nullable | Default | Storage  | Stats target | Description   
-------------+--------------------------+-----------+----------+---------+----------+--------------+-------------  
 time        | timestamp with time zone |           | not null |         | plain    |              |   
 location    | text                     |           | not null |         | extended |              |   
 temperature | double precision         |           |          |         | plain    |              |   
 humidity    | double precision         |           |          |         | plain    |              |   
Indexes:  
    "conditions_time_idx" btree ("time" DESC)  
Triggers:  
    ts_insert_blocker BEFORE INSERT ON conditions FOR EACH ROW EXECUTE PROCEDURE _timescaledb_internal.insert_blocker()  
Child tables: _timescaledb_internal._hyper_1_1_chunk,  
              _timescaledb_internal._hyper_1_2_chunk  
  
  
postgres=# SELECT * FROM conditions ORDER BY time DESC LIMIT 100;  
             time              |             location             |    temperature    |     humidity        
-------------------------------+----------------------------------+-------------------+-------------------  
 2023-01-16 16:27:12.442233+00 | 70efdf2ec9b086079795c442636b55fb | 0.917297508567572 |  45.0286225881428  
 2023-01-16 16:27:11.442233+00 | b056eb1587586b71e2da9acfe4fbd19e |  59.0947337448597 |  49.3321735877544  
 2023-01-16 16:27:10.442233+00 | 28dd2c7955ce926456240b2ff0100bde |  26.5667649917305 |  88.5223139543086  
 2023-01-16 16:27:09.442233+00 | 1ecfb463472ec9115b10c292ef8bc986 |  12.9402264486998 |   23.304360313341  
 2023-01-16 16:27:08.442233+00 | 82161242827b703e6acf9c726942a1e4 |  48.1451884843409 |  97.9283190798014  
 2023-01-16 16:27:07.442233+00 | 812b4ba287f5ee0bc9d43bbf5bbe87fb |  76.0097410064191 |  20.2729247976094  
 2023-01-16 16:27:06.442233+00 | d645920e395fedad7bbbed0eca3fe2e0 |  97.6623016409576 |  22.9934238363057  
 2023-01-16 16:27:05.442233+00 | 0d0fd7c6e093f7b804fa0150b875b868 |  7.43439155630767 |  96.3830435648561  
 2023-01-16 16:27:04.442233+00 | 6e2713a6efee97bacb63e52c54f0ada0 |  30.4179009050131 |  36.7151976097375  
 2023-01-16 16:27:03.442233+00 | fb7b9ffa5462084c5f4e7e85a093e6d7 |  22.1182454843074 |  23.0733227450401  
 2023-01-16 16:27:02.442233+00 | d1f255a373a3cef72e03aa9d980c7eca |  95.6964490003884 |  43.6015542596579  
 2023-01-16 16:27:01.442233+00 | 89f0fd5c927d466d6ec9a21b9ac34ffa |  60.8098595868796 |  26.7892859410495  
 ...  

分片字段自动创建索引

postgres=# explain SELECT * FROM conditions ORDER BY time DESC LIMIT 100;  
                                                            QUERY PLAN                                                               
-----------------------------------------------------------------------------------------------------------------------------------  
 Limit  (cost=0.42..7.77 rows=100 width=56)  
   ->  Custom Scan (ChunkAppend) on conditions  (cost=0.42..32778.88 rows=446297 width=56)  
         Order: conditions."time" DESC  
         ->  Index Scan using _hyper_1_2_chunk_conditions_time_idx on _hyper_1_2_chunk  (cost=0.42..32778.88 rows=446297 width=56)  
         ->  Index Scan using _hyper_1_1_chunk_conditions_time_idx on _hyper_1_1_chunk  (cost=0.42..48162.05 rows=656108 width=56)  
(5 rows)  

实时聚合基表数据例子

https://legacy-docs.timescale.com/v1.7/using-timescaledb/continuous-aggregates

创建基表

CREATE TABLE conditions (  
      time TIMESTAMPTZ NOT NULL,  
      device INTEGER NOT NULL,  
      temperature FLOAT NOT NULL,  
      PRIMARY KEY(time, device)  
);  
SELECT create_hypertable('conditions', 'time');  

创建自动聚合视图

CREATE VIEW conditions_summary_hourly  
WITH (timescaledb.continuous) AS  
SELECT device,  
       time_bucket(INTERVAL '1 hour', time) AS bucket,  
       AVG(temperature),  
       MAX(temperature),  
       MIN(temperature)  
FROM conditions  
GROUP BY device, bucket;  
  
  
CREATE VIEW conditions_summary_daily  
WITH (timescaledb.continuous) AS  
SELECT device,  
       time_bucket(INTERVAL '1 day', time) AS bucket,  
       AVG(temperature),  
       MAX(temperature),  
       MIN(temperature)  
FROM conditions  
GROUP BY device, bucket;  

写入测试数据

INSERT INTO conditions(time, device, temperature)   
select now()+(id||' second')::interval,   
  (random()*100)::int,   
  random()*100    
  from generate_series(1,1000000) id;  

查询聚合视图

SELECT * FROM conditions_summary_daily  
WHERE device = 5  
  AND bucket >= '2023-01-01' AND bucket < '2023-01-10';  
  
  
 device |         bucket         |       avg        |       max        |        min           
--------+------------------------+------------------+------------------+--------------------  
      5 | 2023-01-05 00:00:00+00 | 52.8728757359047 | 99.9651623424143 |  0.113607617095113  
      5 | 2023-01-06 00:00:00+00 | 50.9738177677259 | 99.9353400431573 | 0.0549898017197847  
      5 | 2023-01-07 00:00:00+00 | 49.2079831483183 | 99.9868880026042 | 0.0576195307075977  
      5 | 2023-01-08 00:00:00+00 | 48.3715454505876 | 99.9165495857596 |  0.242615444585681  
      5 | 2023-01-09 00:00:00+00 | 49.0718302013499 | 99.7824223246425 | 0.0885920133441687  
(5 rows)  
SELECT * FROM conditions_summary_daily  
WHERE max - min > 1800  
  AND bucket >= '2023-01-01' AND bucket < '2023-04-01'  
ORDER BY bucket DESC, device DESC LIMIT 20;  

修改聚合视图的自动刷新延迟、保留时间窗口、手工基于时间窗口维护保留数据

ALTER VIEW conditions_summary_hourly SET (  
  timescaledb.refresh_lag = '1 hour'  
);  
  
  
ALTER VIEW conditions_summary_daily SET (  
  timescaledb.ignore_invalidation_older_than = '30 days'  
);  
  
  
SELECT drop_chunks(INTERVAL '30 days', 'conditions_summary_daily');  

修改自动聚合视图风格, 是否只查询已聚合内容、或包含未聚合内容(需实时查询基表进行计算):

ALTER VIEW conditions_summary_hourly SET (  
    timescaledb.materialized_only = false  
);  
  
ALTER VIEW conditions_summary_daily SET (  
    timescaledb.materialized_only = false  
);  

参考

https://legacy-docs.timescale.com/v1.7/main

https://legacy-docs.timescale.com/v1.7/using-timescaledb/continuous-aggregates

https://github.com/timescale/timescaledb-tune

相关实践学习
使用PolarDB和ECS搭建门户网站
本场景主要介绍基于PolarDB和ECS实现搭建门户网站。
阿里云数据库产品家族及特性
阿里云智能数据库产品团队一直致力于不断健全产品体系,提升产品性能,打磨产品功能,从而帮助客户实现更加极致的弹性能力、具备更强的扩展能力、并利用云设施进一步降低企业成本。以云原生+分布式为核心技术抓手,打造以自研的在线事务型(OLTP)数据库Polar DB和在线分析型(OLAP)数据库Analytic DB为代表的新一代企业级云原生数据库产品体系, 结合NoSQL数据库、数据库生态工具、云原生智能化数据库管控平台,为阿里巴巴经济体以及各个行业的企业客户和开发者提供从公共云到混合云再到私有云的完整解决方案,提供基于云基础设施进行数据从处理、到存储、再到计算与分析的一体化解决方案。本节课带你了解阿里云数据库产品家族及特性。
目录
相关文章
|
2月前
|
存储 人工智能 Cloud Native
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
在9月20日2024云栖大会上,阿里云智能集团副总裁,数据库产品事业部负责人,ACM、CCF、IEEE会士(Fellow)李飞飞发表《从数据到智能:Data+AI驱动的云原生数据库》主题演讲。他表示,数据是生成式AI的核心资产,大模型时代的数据管理系统需具备多模处理和实时分析能力。阿里云瑶池将数据+AI全面融合,构建一站式多模数据管理平台,以数据驱动决策与创新,为用户提供像“搭积木”一样易用、好用、高可用的使用体验。
云栖重磅|从数据到智能:Data+AI驱动的云原生数据库
|
2月前
|
人工智能 关系型数据库 分布式数据库
拥抱Data+AI|“全球第一”雅迪如何实现智能营销?DMS+PolarDB注入数据新活力
针对雅迪“云销通App”的需求与痛点,本文将介绍阿里云瑶池数据库DMS+PolarDB for AI提供的一站式Data+AI解决方案,助力销售人员高效用数,全面提升销售管理效率。
|
2月前
|
关系型数据库 分布式数据库 PolarDB
参与有礼|开源PolarDB文档捉虫
2024年9月,开源PolarDB-PG发布兼容PostgreSQL 15版本,为提升用户体验,特举办“开源文档捉虫”活动,邀请您反馈文档问题和优化建议。活动时间为2024年11月1日至2025年2月28日。参与即有机会赢取PolarDB开源社区T恤、新春茶碗及福字版印礼盒等丰富奖品。更多详情及反馈入口请点击链接。
参与有礼|开源PolarDB文档捉虫
|
2月前
|
数据库
|
3月前
|
存储 关系型数据库 分布式数据库
使用开源PolarDB和imgsmlr进行高效的图片存储和相似度搜索
使用开源PolarDB和imgsmlr进行高效的图片存储和相似度搜索
|
3月前
|
SQL JSON 关系型数据库
MySQL是一个广泛使用的开源关系型数据库管理系统,它有许多不同的版本
【10月更文挑战第3天】MySQL是一个广泛使用的开源关系型数据库管理系统,它有许多不同的版本
217 5
|
3月前
|
关系型数据库 分布式数据库 数据库
PolarDB 开源:推动数据库技术新变革
在数字化时代,数据成为核心资产,数据库的性能和可靠性至关重要。阿里云的PolarDB作为新一代云原生数据库,凭借卓越性能和创新技术脱颖而出。其开源不仅让开发者深入了解内部架构,还促进了数据库生态共建,提升了稳定性与可靠性。PolarDB采用云原生架构,支持快速弹性扩展和高并发访问,具备强大的事务处理能力及数据一致性保证,并且与多种应用无缝兼容。开源PolarDB为国内数据库产业注入新活力,打破国外垄断,推动国产数据库崛起,降低企业成本与风险。未来,PolarDB将在生态建设中持续壮大,助力企业数字化转型。
119 2
|
3月前
|
关系型数据库 MySQL 分布式数据库
零基础教你用云数据库PolarDB搭建企业网站,完成就送桌面收纳桶!
零基础教你用云数据库PolarDB搭建企业网站,完成就送桌面收纳桶,邀请好友完成更有机会获得​小米Watch S3、小米体重称​等诸多好礼!
零基础教你用云数据库PolarDB搭建企业网站,完成就送桌面收纳桶!
|
4月前
|
关系型数据库 MySQL Serverless
探索PolarDB MySQL版:Serverless数据库的灵活性与性能
本文介绍了个人开发者对阿里云PolarDB MySQL版,特别是其Serverless特性的详细评测体验。评测涵盖了产品初体验、性能观测、Serverless特性深度评测及成本效益分析等方面。尽管试用过程中遇到一些小问题,但总体而言,PolarDB MySQL版表现出色,提供了高性能、高可用性和灵活的资源管理,是个人开发者和企业用户的优秀选择。

热门文章

最新文章

相关产品

  • 云原生数据库 PolarDB