【设备状态智能诊断队】基于AI技术的核电故障早期预警和诊断模型

简介: 宁德核电Python大赛设备状态智能诊断队作品展示。

设备智能诊断队.jpg

【小组队名】设备状态智能诊断队

【小组队员】欧阳辉(组长)、熊少勇、张建杰、郎国庆、史镇玮

【小组口号】以智取胜,创新求远。让智能与核电共舞!


【作品名字】基于AI技术的核电故障早期预警和诊断模型

【作品展示】

幻灯片1.JPG幻灯片2.JPG幻灯片3.JPG幻灯片4.JPG幻灯片5.JPG幻灯片6.JPG幻灯片7.JPG幻灯片8.JPG幻灯片9.JPG幻灯片10.JPG幻灯片11.JPG幻灯片12.JPG幻灯片13.JPG幻灯片14.JPG幻灯片15.JPG幻灯片16.JPG幻灯片17.JPG幻灯片18.JPG幻灯片19.JPG幻灯片20.JPG幻灯片21.JPG幻灯片22.JPG幻灯片23.JPG幻灯片24.JPG幻灯片25.JPG幻灯片26.JPG幻灯片27.JPG

【视频展示】

(温馨提示:如使用手机观看时视频无法适配屏幕尺寸,请将视频左滑点击全屏按钮观看!)


【技术文章展示】

基于AI技术的核电故障早期预警和诊断模型

仪控项目组:欧阳辉、张建杰、郎国庆、史镇玮、熊少勇

一、    引言

本文章主要是介绍如何通过AI技术来对核电站的相关典型故障做早期故障识别预警以及诊断的办法,本次的AI算法模型是基于Python进行开发的,但是Python并不是本次项目的核心要素,其只是一个搭建的工具,本次的所有功能都打包成一个EXE文件,但该执行文件并没有我们常规意义上的可显示界面。此次进行的机器学习的核心算法是微软的开源算法LightGBM,于其称之为算法不如称之为宏大的开源项目工程更为贴切,LightGBM2017年由微软推出的可扩展机器学习系统,是微软旗下DMKT的一个开源项目,它是一款基于GBDT(梯度提升决策树)算法的分布式梯度提升框架,为了满足缩短模型计算时间的需求而诞生,LightGBM的设计思路主要集中在减小数据对内存与计算性能的使用,以及减少多机器并行计算时的通讯代价。与其这样说可能过于枯燥,首先来看一下其强大功能目前主要的应用场景:

Ø  癌症分类预测-良/恶性癌肿瘤预测

Ø  实现基于客户浏览内容的个性化推荐

Ø  信用评级以及金融诈骗识别(是否是金融诈骗)

Ø  航空发动机剩余寿命预测

 

二、    研究对象的选取

本次研究的对象主要是基于以决策树为基础算法模块,此方法目前比较多的用于金融体系的信用评级,癌症的辅助诊断和基因突变识别以及大宗商品的销售预测等。其主要的模型构思如下图所示:

111.png

此次分析的模型主要是基于N4ARE032VL异常故障而导致SG水位波动的事故。其研究对象的维度主要如下:

12121212.jpg


注意:由于本次研究的对象数据全部来源于KNS数据,因此由于受限KNS平台的限制,以上的数据维度仅采用了7个维度,但从AI数据分析来看维度的个数在强关联性下应该是越多越好!

3333.png

写到这里大家可能会觉得异常枯燥,所以先给大家展示一下此次模型能够实现的机器预测的魅力,注意:本次模型里面仅仅只涉及到二分类,也就是“0”代表“正常”;“1”代表“故障”。

3.5.jpg444.png

从上图的IOE报告截图可以看出:在202271620:02:29分出现N4ARE403KA1报警,但是如果用机器模型来预警的话从第二张图可以看出:能够在同一时段的20:00:28就能判断出有故障情况的出现。但是仅仅通过现有的DCS技术和人工识别都是无法能够在严格意义上的第一时间甄别出来的,从AI数据的分析来看告诉我们一点:“任何质的改变都是由细小的量变开始的!”

 

三、    数据的获取

由于本次数据全部来源于KNS,因此为了能够实时通过KNS来获取数据也成为此次项目的核心技术要点,否则如果仅仅只是通过分析历史数据则丧失了实时对观测数据进行动态监视预测的功能。其大致的流程如下所示:

5555.jpg

模拟RPA功能:由于需要获取当前的实时KNS数据,因此必须要通过Python代码来模拟实现鼠标和键盘操作才能够实现此功能,其在KNS实现的效果如下视频所示:

在获取大量的数据之后需要对数据进行处理,以便于下一步的模型算法的利用,其主要的流程如下:

777.jpg

至此相关需要进行机器学习的数据已经基本上处理完毕,下一步将进行机器学习的数据划分,其大致的流程如下:

888.jpg

本次机器学习的算法虽然维度较少,但是为了便于进一步了解“正常”(绿色)和“故障”(红色)的大体分布以便于为下一步的分析带来便利,因此通过降维的方式进行数据展示并分析,降维后的显示如下所示:

9999.jpg

可能这种显示不够直观,因此引入了4号机组比例阀卡涩的模型,也就是4GRE017MM相关故障的降维模型显示:

1000.jpg

 

四、    模型的建立

所谓模型的建立其核心内容也就是如何选择合适算法的过程,在此过程中确实经历过不少挫折,但最终在老师的指点下找到了最为合适的算法也就是开篇介绍的LightGMB,其大致的过程如下:

11.jpg

在以上主要是针对的设备模型的故障预测,但是却没有提到诊断功能的实现方式,因此如下将简单介绍一下诊断功能的实现方式,也就是模型的重头戏:特征重要性----和我们的根本原因分析有异曲同工之妙,简单来说,所谓“特征重要性”的评判就是:如果该特征非常的重要,那么稍微改变一点它的值,就会对模型造成很大的影响。其实现的代码和数据如下所示:

12.jpg13.jpg

因此模型给出的特征重要性的第一个就是“4ARE032VLC”,这个结果和我们实际的情况是完全一致的。

基于以上是比较通俗的概括了模型预测的准确性,但是基于模型“好与坏”的各项指标是有其专业的评判标准,下面做个简单的介绍。

1.     混淆矩阵的数据

14.png

从上图可以看出,在三十八万多条数据当中,模型仅仅只有8个案例被识别错误!

2.     ROC曲线指标

15.png

3.     独立测试

为了验证模型的真实可靠性,采用了两种方法来进行一一的验证,第一种是完全独立于机器学习的43条数据(其中“正常”数据23条,“故障”数据20条);第二种是从KNS随机抽取5190条数据进行测试,其两种测试结果分别如下所示:

16.jpg

第一种测试情况模型能够完美的进行识别,其识别率为100%,但是这可能与测试样本较少有关!

17.jpg

第二种测试情况当中,在对5190条随机数据进行模型比对其中有37个故障状态识别错误,被识别成正常状态!(但这37条数据是在初次预警判断之后出现的,可能和当时4ARE032VLC被置为手动有强关联性所致)


五、    对实时获取的数据比对并报警

在上文中已经描述过通过类似RPA的方法来实时获取CSV文件数据,但是由于此操作方法是模拟键盘鼠标,因此在数据的采集上会有大约3秒钟的间隔,为了提高效率每个CSV文件仅仅保存近10秒钟的数据点(KSN的采集精度为1个数据/S),因此必须通过代码来实时对众多的CSV文件中的数据进行合理的整合、去重,并将实时数据与模型进行比对,当数据比对出的结果显示为“故障”状态时会对该数据进行标识,并同步的会通过程序来触发特定的报警声响报警来做提示效果。如此一来数据的比对与实时数据的滞后时间大概能维持在4秒钟的时差,基本上可以实现实时数据的比对和预警功能。

18.jpg

至此整个项目从前期的研究对象的选取、数据的获取方式和处理、模型的建立、算法的探索经历了不少的困难,但是却最终能够将该有的功能实现出来还是比较令人欣慰,特别是在前期得知无法通过简单的Python“爬虫”技术从KNS获取数据时几乎要放弃而另辟蹊径,但最终还是能够实现我们想要的效果,在此还是衷心地感谢一下阿里云的何老师、吕博士给我们带来了全新的数字化理念和思维方式,商业有价但教育无价。感谢!!


目录
相关文章
|
10天前
|
人工智能 自然语言处理 机器人
文档智能与RAG技术如何提升AI大模型的业务理解能力
随着人工智能的发展,AI大模型在自然语言处理中的应用日益广泛。文档智能和检索增强生成(RAG)技术的兴起,为模型更好地理解和适应特定业务场景提供了新方案。文档智能通过自动化提取和分析非结构化文档中的信息,提高工作效率和准确性。RAG结合检索机制和生成模型,利用外部知识库提高生成内容的相关性和准确性。两者的结合进一步增强了AI大模型的业务理解能力,助力企业数字化转型。
47 3
|
6天前
|
机器学习/深度学习 人工智能 自然语言处理
AI技术在医疗领域的应用与前景####
本文探讨了人工智能(AI)在医疗领域的多方面应用,包括疾病诊断、个性化治疗、患者管理以及药物研发等。通过对现有技术的梳理和未来趋势的展望,旨在揭示AI如何推动医疗行业的变革,并提升医疗服务的质量和效率。 ####
25 5
|
8天前
|
人工智能 文字识别 运维
AI多模态的5大核心关键技术,让高端制造实现智能化管理
结合大模型应用场景,通过AI技术解析高端制造业的复杂设备与文档数据,自动化地将大型零件、机械图纸、操作手册等文档结构化。核心技术包括版面识别、表格抽取、要素抽取和文档抽取,实现信息的系统化管理和高效查询,大幅提升设备维护和生产管理的效率。
|
13天前
|
人工智能 自然语言处理 算法
企业内训|AI/大模型/智能体的测评/评估技术-某电信运营商互联网研发中心
本课程是TsingtaoAI专为某电信运营商的互联网研发中心的AI算法工程师设计,已于近日在广州对客户团队完成交付。课程聚焦AI算法工程师在AI、大模型和智能体的测评/评估技术中的关键能力建设,深入探讨如何基于当前先进的AI、大模型与智能体技术,构建符合实际场景需求的科学测评体系。课程内容涵盖大模型及智能体的基础理论、测评集构建、评分标准、自动化与人工测评方法,以及特定垂直场景下的测评实战等方面。
70 4
|
13天前
|
机器学习/深度学习 人工智能 算法
探索AI在医疗诊断中的应用及其未来趋势
【10月更文挑战第34天】随着人工智能技术的飞速发展,其在医疗领域的应用也日益广泛。本文将探讨AI技术在医疗诊断中的具体应用案例,分析其对提升诊断效率和准确性的积极影响,并预测未来AI在医疗诊断中的发展趋势。通过实际代码示例,我们将深入了解AI如何帮助医生进行更精准的诊断。
|
12天前
|
机器学习/深度学习 人工智能 算法
探索AI在医疗影像诊断中的应用
探索AI在医疗影像诊断中的应用
|
13天前
|
机器学习/深度学习 人工智能 算法
基于AI的性能优化技术研究
基于AI的性能优化技术研究
|
9天前
|
机器学习/深度学习 人工智能 自然语言处理
当前AI大模型在软件开发中的创新应用与挑战
2024年,AI大模型在软件开发领域的应用正重塑传统流程,从自动化编码、智能协作到代码审查和测试,显著提升了开发效率和代码质量。然而,技术挑战、伦理安全及模型可解释性等问题仍需解决。未来,AI将继续推动软件开发向更高效、智能化方向发展。
|
13天前
|
机器学习/深度学习 人工智能 自然语言处理
AI在医疗领域的应用及其挑战
【10月更文挑战第34天】本文将探讨人工智能(AI)在医疗领域的应用及其面临的挑战。我们将从AI技术的基本概念入手,然后详细介绍其在医疗领域的各种应用,如疾病诊断、药物研发、患者护理等。最后,我们将讨论AI在医疗领域面临的主要挑战,包括数据隐私、算法偏见、法规合规等问题。
37 1
|
5天前
|
机器学习/深度学习 人工智能 算法
AI在医疗诊断中的应用
【10月更文挑战第42天】本文将探讨人工智能(AI)在医疗诊断中的应用,包括其优势、挑战和未来发展方向。我们将通过实例来说明AI如何改变医疗行业,提高诊断的准确性和效率。

热门文章

最新文章

下一篇
无影云桌面