目标检测:SppNet核心思想

简介: 目标检测:SppNet核心思想

SppNet

在这里插入图片描述

面临的问题

  1. 速度:由于RCNN需要对一张图片产生2000个候选区域分别采用cnn提取特征,大大增加了速度。
  2. 性能:由于全连接网络的限制,Selective Search 产生的候选框需要固定尺寸(227 * 227),会给图像造成不规则变形,这也会造成性能的损失。

空间金字塔池化

在这里插入图片描述

为了解决性能问题,作者的想法是让图片经过卷积层后,在卷积层与全连接层的中间加上一层可以特殊的网络结构,无论卷积层输出多大的feature map,都可以输出固定的向量,这样就可以解决全连接层的限制,也就结解决了需要对候选框resize造成图像失真的问题。

上面的特殊的网络层就叫做空间金字塔池化,是指把卷积层输出的featuremap的HW分别平均分成 16份、4份、1份,然后每一份做maxpooling,假设channel是3,那么无论输入多大,输出都是(16+4+1)*3。

特征图映射

在这里插入图片描述

为了解决速度问题,由于rcnn需要对每一张图片产生的所有候选框分别提取特征,但这实质其实是对同一张图片的不同部分做提取,如果我们可以直接对cnn提取整张图像的feature map,然后根据候选框的在原图中的相对位置找到对应的整张feature map中候选框的feature map的相对位置,这样每张图像就只需要提取一次cnn的操作,然后根据映射找到候选框feature对于整张图像的feature 相对位置,也就找到了候选框的feature。

映射细节

存在的问题

和RCNN一样,SPP也需要训练CNN提取特征,然后训练SVM分类这些特征。需要巨大的存储空间,并且分开训练也很复杂。而且selective search的方法提取特征是在CPU上进行的,相对于GPU来说还是比较慢的。针对这些问题的改进,我们将在Fast RCNN以及Faster RCNN中介绍。

目录
相关文章
|
机器学习/深度学习 传感器 编解码
再谈注意力机制 | 运用强化学习实现目标特征提取
再谈注意力机制 | 运用强化学习实现目标特征提取
再谈注意力机制 | 运用强化学习实现目标特征提取
|
2月前
|
机器学习/深度学习 算法 计算机视觉
卷积神经网络(CNN)的工作原理深度解析
【6月更文挑战第14天】本文深度解析卷积神经网络(CNN)的工作原理。CNN由输入层、卷积层、激活函数、池化层、全连接层和输出层构成。卷积层通过滤波器提取特征,激活函数增加非线性,池化层降低维度。全连接层整合特征,输出层根据任务产生预测。CNN通过特征提取、整合、反向传播和优化进行学习。尽管存在计算量大、参数多等问题,但随着技术发展,CNN在计算机视觉领域的潜力将持续增长。
|
3月前
|
机器学习/深度学习 算法 计算机视觉
目标检测的基本概念有哪些
目标检测的基本概念有哪些
|
5天前
|
机器学习/深度学习 监控 算法
目标检测算法技术
8月更文挑战第11天
|
9天前
|
机器学习/深度学习 监控 算法
目标检测算法
8月更文挑战第8天
|
1月前
|
机器学习/深度学习 自然语言处理 搜索推荐
深度学习中的自注意力机制:原理与应用
在深度学习领域,自注意力机制(Self-Attention Mechanism)已经成为一种强大的工具,它允许模型在处理序列数据时更加高效和灵活。本文将深入探讨自注意力机制的工作原理、数学基础以及在不同应用场景下的表现。我们将通过具体案例分析,展示自注意力如何提升神经网络对长距离依赖的捕捉能力,以及它在自然语言处理(NLP)、计算机视觉(CV)等领域的应用成效。
138 0
|
9月前
|
机器学习/深度学习 自然语言处理
深度剖析Transformer核心思想 "Attention Is All You Need"
深度剖析Transformer核心思想 "Attention Is All You Need"
209 1
|
3月前
|
机器学习/深度学习 自然语言处理 监控
卷积神经网络的原理、结构和应用
【4月更文挑战第7天】
53 0
卷积神经网络的原理、结构和应用
|
10月前
|
机器学习/深度学习 监控 算法
目标检测算法的优缺点及适用场景
目标检测算法的优缺点及适用场景
366 0
|
3月前
|
机器学习/深度学习 算法 计算机视觉
详细介绍CNN卷积层的原理、结构和应用,并探讨其在图像处理和计算机视觉任务中的重要性
详细介绍CNN卷积层的原理、结构和应用,并探讨其在图像处理和计算机视觉任务中的重要性
351 0
详细介绍CNN卷积层的原理、结构和应用,并探讨其在图像处理和计算机视觉任务中的重要性