Flink1.13架构全集| 一文带你由浅入深精通Flink方方面面(二)D

本文涉及的产品
实时计算 Flink 版,5000CU*H 3个月
简介: Flink1.13架构全集| 一文带你由浅入深精通Flink方方面面(二)

3. 聚合状态(AggregatingState)

我们举一个简单的例子,首先自定义一个产生随机整数的自定义数据源,然后进行累加。当累加到999时,清空聚合状态变量,然后重新累加。可以看到我们这里使用RichFlatMapFunction实现了sum的功能。

public class AggregateStateExample {
    public static void main(String[] args) throws Exception {
        StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
        env.setParallelism(1);
        env
                .addSource(new SourceFunction<Tuple2<String, Integer>>() {
                    private boolean running = true;
                    private Random random = new Random();
                    @Override
                    public void run(SourceContext<Tuple2<String, Integer>> sourceContext) throws Exception {
                        while (true) {
                            sourceContext.collect(Tuple2.of("key", random.nextInt()));
                        }
                    }
                    @Override
                    public void cancel() {
                        running = false;
                    }
                })
                .keyBy(r -> r.f0)
                .flatMap(new CountFunction())
                .print();
        env.execute();
    }
    public static class CountFunction extends RichFlatMapFunction<Tuple2<String, Integer>, Integer> {
        private int count = 0;
        // 声明聚合状态变量
        private AggregatingState<Tuple2<String, Integer>, Integer> aggregatingState;
        @Override
        public void open(Configuration parameters) throws Exception {
            super.open(parameters);
            AggregatingStateDescriptor<Tuple2<String, Integer>, Integer, Integer> descriptor = new AggregatingStateDescriptor<Tuple2<String, Integer>, Integer, Integer>(
                    "aggregatingState", new AggregateFunction<Tuple2<String, Integer>, Integer, Integer>() {
                @Override
                public Integer createAccumulator() {
                    return 0;
                }
                @Override
                public Integer add(Tuple2<String, Integer> value, Integer accumulator) {
                    return accumulator + 1;
                }
                @Override
                public Integer getResult(Integer accumulator) {
                    return accumulator;
                }
                @Override
                public Integer merge(Integer a, Integer b) {
                    return a + b;
                }
            }, Types.INT);
            aggregatingState = getRuntimeContext().getAggregatingState(descriptor);
        }
        @Override
        public void flatMap(Tuple2<String, Integer> value, Collector<Integer> out) throws Exception {
            count++;
            if (count % 1000 == 0) {
                out.collect(aggregatingState.get());
                aggregatingState.clear(); // 清空状态变量
            } else {
                // 增量更新AggregatingState,这里每来一个新元素,对ACC累加1
                aggregatingState.add(value);
            }
        }
    }
}

13.2.4 状态生存时间(TTL)

在实际应用中,很多状态会随着时间的推移逐渐增长,如果不加以限制,最终就会导致存储空间的耗尽。一个优化的思路是直接在代码中调用.clear()方法去清除状态,但是有时候我们的逻辑要求不能直接清除。这时就需要配置一个状态的“生存时间”(time-to-live,TTL),当状态在内存中存在的时间超出这个值时,就将它清除。

具体实现上,如果用一个进程不停地扫描所有状态看是否过期,显然会占用大量资源做无用功。状态的失效其实不需要立即删除,所以我们可以给状态附加一个属性,也就是状态的“失效时间”。状态创建的时候,设置 失效时间 = 当前时间 + TTL;之后如果有对状态的访问和修改,我们可以再对失效时间进行更新;当设置的清除条件被触发时(比如,状态被访问的时候,或者每隔一段时间扫描一次失效状态),就可以判断状态是否失效、从而进行清除了。

配置状态的TTL时,需要创建一个StateTtlConfig配置对象,然后调用状态描述器的.enableTimeToLive()方法启动TTL功能。

StateTtlConfig ttlConfig = StateTtlConfig
    .newBuilder(Time.seconds(10))
    .setUpdateType(StateTtlConfig.UpdateType.OnCreateAndWrite)
    .setStateVisibility(StateTtlConfig.StateVisibility.NeverReturnExpired)
    .build();
ValueStateDescriptor<String> stateDescriptor = new ValueStateDescriptor<>("my state", String.class);
stateDescriptor.enableTimeToLive(ttlConfig);

这里用到了几个配置项:

.newBuilder()
状态TTL配置的构造器方法,必须调用,返回一个Builder之后再调用.build()方法就可以得到StateTtlConfig了。方法需要传入一个Time作为参数,这就是设定的状态生存时间。
.setUpdateType()
设置更新类型。更新类型指定了什么时候更新状态失效时间,这里的OnCreateAndWrite表示只有创建状态和更改状态(写操作)时更新失效时间。另一种类型OnReadAndWrite则表示无论读写操作都会更新失效时间,也就是只要对状态进行了访问,就表明它是活跃的,从而延长生存时间。这个配置默认为OnCreateAndWrite。
.setStateVisibility()
设置状态的可见性。所谓的“状态可见性”,是指因为清除操作并不是实时的,所以当状态过期之后还有可能继续存在,这时如果对它进行访问,能否正常读取到就是一个问题了。这里设置的NeverReturnExpired是默认行为,表示从不返回过期值,也就是只要过期就认为它已经被清除了,应用不能继续读取;这在处理会话或者隐私数据时比较重要。对应的另一种配置是ReturnExpireDefNotCleanedUp,就是如果过期状态还存在,就返回它的值。

除此之外,TTL配置还可以设置在保存检查点(checkpoint)时触发清除操作,或者配置增量的清理(incremental cleanup),还可以针对RocksDB状态后端使用压缩过滤器(compaction filter)进行后台清理。这里需要注意,目前的TTL设置只支持处理时间。

13.3 算子状态(Operator State)

除按键分区状态(Keyed State)之外,另一大类受控状态就是算子状态(Operator State)。从某种意义上说,算子状态是更底层的状态类型,因为它只针对当前算子并行任务有效,不需要考虑不同key的隔离。算子状态功能不如按键分区状态丰富,应用场景较少,它的调用方法也会有一些区别。

13.3.1 基本概念和特点

算子状态(Operator State)就是一个算子并行实例上定义的状态,作用范围被限定为当前算子任务。算子状态跟数据的key无关,所以不同key的数据只要被分发到同一个并行子任务,就会访问到同一个Operator State。算子状态的实际应用场景不如Keyed State多,一般用在Source或Sink等与外部系统连接的算子上,或者完全没有key定义的场景。比如Flink的Kafka连接器中,就用到了算子状态。当算子的并行度发生变化时,算子状态也支持在并行的算子任务实例之间做重组分配。根据状态的类型不同,重组分配的方案也会不同。

13.3.2 状态类型

算子状态也支持不同的结构类型,主要有三种:ListState、UnionListState和BroadcastState。

1. 列表状态(ListState)

与Keyed State中的ListState一样,将状态表示为一组数据的列表。与Keyed State中的列表状态的区别是:在算子状态的上下文中,不会按键(key)分别处理状态,所以每一个并行子任务上只会保留一个“列表”(list),也就是当前并行子任务上所有状态项的集合。列表中的状态项就是可以重新分配的最细粒度,彼此之间完全独立。当算子并行度进行缩放调整时,算子的列表状态中的所有元素项会被统一收集起来,相当于把多个分区的列表合并成了一个“大列表”,然后再均匀地分配给所有并行任务。这种“均匀分配”的具体方法就是“轮询”(round-robin),与之前介绍的rebanlance数据传输方式类似,是通过逐一“发牌”的方式将状态项平均分配的。这种方式也叫作“平均分割重组”(even-split redistribution)。算子状态中不会存在“键组”(key group)这样的结构,所以为了方便重组分配,就把它直接定义成了“列表”(list)。这也就解释了,为什么算子状态中没有最简单的值状态(ValueState)。

2. 联合列表状态(UnionListState)

与ListState类似,联合列表状态也会将状态表示为一个列表。它与常规列表状态的区别在于,算子并行度进行缩放调整时对于状态的分配方式不同。UnionListState的重点就在于“联合”(union)。在并行度调整时,常规列表状态是轮询分配状态项,而联合列表状态的算子则会直接广播状态的完整列表。这样,并行度缩放之后的并行子任务就获取到了联合后完整的“大列表”,可以自行选择要使用的状态项和要丢弃的状态项。这种分配也叫作“联合重组”(union redistribution)。如果列表中状态项数量太多,为资源和效率考虑一般不建议使用联合重组的方式。

3. 广播状态(BroadcastState)

有时我们希望算子并行子任务都保持同一份“全局”状态,用来做统一的配置和规则设定。这时所有分区的所有数据都会访问到同一个状态,状态就像被“广播”到所有分区一样,这种特殊的算子状态,就叫作广播状态(BroadcastState)。因为广播状态在每个并行子任务上的实例都一样,所以在并行度调整的时候就比较简单,只要复制一份到新的并行任务就可以实现扩展;而对于并行度缩小的情况,可以将多余的并行子任务连同状态直接砍掉——因为状态都是复制出来的,并不会丢失。

13.4 状态持久化和状态后端

在Flink的状态管理机制中,很重要的一个功能就是对状态进行持久化(persistence)保存,这样就可以在发生故障后进行重启恢复。Flink对状态进行持久化的方式,就是将当前所有分布式状态进行“快照”保存,写入一个“检查点”(checkpoint)或者保存点(savepoint)保存到外部存储系统中。具体的存储介质,一般是分布式文件系统(distributed file system)。

13.4.1 检查点(Checkpoint)

有状态流应用中的检查点(checkpoint),其实就是所有任务的状态在某个时间点的一个快照(一份拷贝)。简单来讲,就是一次“存盘”,让我们之前处理数据的进度不要丢掉。在一个流应用程序运行时,Flink 会定期保存检查点,在检查点中会记录每个算子的id和状态;如果发生故障,Flink就会用最近一次成功保存的检查点来恢复应用的状态,重新启动处理流程,就如同“读档”一样。

如果保存检查点之后又处理了一些数据,然后发生了故障,那么重启恢复状态之后这些数据带来的状态改变会丢失。为了让最终处理结果正确,我们还需要让源(Source)算子重新读取这些数据,再次处理一遍。这就需要流的数据源具有“数据重放”的能力,一个典型的例子就是Kafka,我们可以通过保存消费数据的偏移量、故障重启后重新提交来实现数据的重放。这是对“至少一次”(at least once)状态一致性的保证,如果希望实现“精确一次”(exactly once)的一致性,还需要数据写入外部系统时的相关保证。关于这部分内容我们会在第10章继续讨论。

默认情况下,检查点是被禁用的,需要在代码中手动开启。直接调用执行环境的.enableCheckpointing()方法就可以开启检查点。

StreamExecutionEnvironment env = StreamExecutionEnvironment.getEnvironment();
env.enableCheckpointing(1000);

这里传入的参数是检查点的间隔时间,单位为毫秒。关于检查点的详细配置,可以参考第10章的内容。除了检查点之外,Flink还提供了“保存点”(savepoint)的功能。保存点在原理和形式上跟检查点完全一样,也是状态持久化保存的一个快照;区别在于,保存点是自定义的镜像保存,所以不会由Flink自动创建,而需要用户手动触发。这在有计划地停止、重启应用时非常有用。

13.4.2 状态后端(State Backends)

检查点的保存离不开JobManager和TaskManager,以及外部存储系统的协调。在应用进行检查点保存时,首先会由JobManager向所有TaskManager发出触发检查点的命令;TaskManger收到之后,将当前任务的所有状态进行快照保存,持久化到远程的存储介质中;完成之后向JobManager返回确认信息。这个过程是分布式的,当JobManger收到所有TaskManager的返回信息后,就会确认当前检查点成功保存,如图所示。而这一切工作的协调,就需要一个“专职人员”来完成。

640.png

在Flink中,状态的存储、访问以及维护,都是由一个可插拔的组件决定的,这个组件就叫作状态后端(state backend)。状态后端主要负责两件事:一是本地的状态管理,二是将检查点(checkpoint)写入远程的持久化存储。

1. 状态后端的分类

状态后端是一个“开箱即用”的组件,可以在不改变应用程序逻辑的情况下独立配置。Flink中提供了两类不同的状态后端,一种是“哈希表状态后端”(HashMapStateBackend),另一种是“内嵌RocksDB状态后端”(EmbeddedRocksDBStateBackend)。如果没有特别配置,系统默认的状态后端是HashMapStateBackend。

(1)哈希表状态后端(HashMapStateBackend)

这种方式就是我们之前所说的,把状态存放在内存里。具体实现上,哈希表状态后端在内部会直接把状态当作对象(objects),保存在Taskmanager的JVM堆(heap)上。普通的状态,以及窗口中收集的数据和触发器(triggers),都会以键值对(key-value)的形式存储起来,所以底层是一个哈希表(HashMap),这种状态后端也因此得名。对于检查点的保存,一般是放在持久化的分布式文件系统(file system)中,也可以通过配置“检查点存储”(CheckpointStorage)来另外指定。HashMapStateBackend是将本地状态全部放入内存的,这样可以获得最快的读写速度,使计算性能达到最佳;代价则是内存的占用。它适用于具有大状态、长窗口、大键值状态的作业,对所有高可用性设置也是有效的。

(2)内嵌RocksDB状态后端(EmbeddedRocksDBStateBackend)

RocksDB是一种内嵌的key-value存储介质,可以把数据持久化到本地硬盘。配置EmbeddedRocksDBStateBackend后,会将处理中的数据全部放入RocksDB数据库中,RocksDB默认存储在TaskManager的本地数据目录里。与HashMapStateBackend直接在堆内存中存储对象不同,这种方式下状态主要是放在RocksDB中的。数据被存储为序列化的字节数组(Byte Arrays),读写操作需要序列化/反序列化,因此状态的访问性能要差一些。另外,因为做了序列化,key的比较也会按照字节进行,而不是直接调用.hashCode()和.equals()方法。对于检查点,同样会写入到远程的持久化文件系统中。EmbeddedRocksDBStateBackend始终执行的是异步快照,也就是不会因为保存检查点而阻塞数据的处理;而且它还提供了增量式保存检查点的机制,这在很多情况下可以大大提升保存效率。由于它会把状态数据落盘,而且支持增量化的检查点,所以在状态非常大、窗口非常长、键/值状态很大的应用场景中是一个好选择,同样对所有高可用性设置有效。

2. 如何选择正确的状态后端

HashMap和RocksDB两种状态后端最大的区别,就在于本地状态存放在哪里:前者是内存,后者是RocksDB。在实际应用中,选择那种状态后端,主要是需要根据业务需求在处理性能和应用的扩展性上做一个选择。HashMapStateBackend是内存计算,读写速度非常快;但是,状态的大小会受到集群可用内存的限制,如果应用的状态随着时间不停地增长,就会耗尽内存资源。而RocksDB是硬盘存储,所以可以根据可用的磁盘空间进行扩展,而且是唯一支持增量检查点的状态后端,所以它非常适合于超级海量状态的存储。不过由于每个状态的读写都需要做序列化/反序列化,而且可能需要直接从磁盘读取数据,这就会导致性能的降低,平均读写性能要比HashMapStateBackend慢一个数量级。我们可以发现,实际应用就是权衡利弊后的取舍。最理想的当然是处理速度快且内存不受限制可以处理海量状态,那就需要非常大的内存资源了,这会导致成本超出项目预算。比起花更多的钱,稍慢的处理速度或者稍小的处理规模,老板可能更容易接受一点。

3. 状态后端的配置

在不做配置的时候,应用程序使用的默认状态后端是由集群配置文件flink-conf.yaml中指定的,配置的键名称为state.backend。这个默认配置对集群上运行的所有作业都有效,我们可以通过更改配置值来改变默认的状态后端。另外,我们还可以在代码中为当前作业单独配置状态后端,这个配置会覆盖掉集群配置文件的默认值。

(1)配置默认的状态后端

在flink-conf.yaml中,可以使用state.backend来配置默认状态后端。配置项的可能值为hashmap,这样配置的就是HashMapStateBackend;也可以是rocksdb,这样配置的就是EmbeddedRocksDBStateBackend。另外,也可以是一个实现了状态后端工厂StateBackendFactory的类的完全限定类名。

下面是一个配置HashMapStateBackend的例子:

# 默认状态后端
state.backend: hashmap
# 存放检查点的文件路径
state.checkpoints.dir: hdfs://namenode:40010/flink/checkpoints
这里的state.checkpoints.dir配置项,定义了状态后端将检查点和元数据写入的目录。

(2)为每个作业(Per-job)单独配置状态后端

每个作业独立的状态后端,可以在代码中,基于作业的执行环境直接设置。代码如下:

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStateBackend(new HashMapStateBackend());

上面代码设置的是HashMapStateBackend,如果想要设置EmbeddedRocksDBStateBackend,可以用下面的配置方式:

StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
env.setStateBackend(new EmbeddedRocksDBStateBackend());

需要注意,如果想在IDE中使用EmbeddedRocksDBStateBackend,需要为Flink项目添加依赖:

<dependency>
    <groupId>org.apache.flink</groupId>
    <artifactId>flink-statebackend-rocksdb_${scala.binary.version}</artifactId>
    <version>${flink.version}</version>
</dependency>

而由于Flink发行版中默认就包含了RocksDB,所以只要我们的代码中没有使用RocksDB的相关内容,就不需要引入这个依赖。

十四、容错机制

在分布式架构中,当某个节点出现故障,其它节点基本不受影响。这时只需要重启应用,恢复之前某个时间点的状态继续处理就可以了。这一切看似简单,可是在实时流处理中,我们不仅需要保证故障后能够重启继续运行,还要保证结果的正确性、故障恢复的速度、对处理性能的影响,这就需要在架构上做出更加精巧的设计。在Flink中,有一套完整的容错机制(fault tolerance)来保证故障后的恢复,其中最重要的就是检查点(checkpoint)。在第九章中,我们已经介绍过检查点的基本概念和用途,接下来我们就深入探讨一下检查点的原理和Flink的容错机制。

14.1 检查点(Checkpoint)

在流处理中,我们可以用存档读档的思路,把之前的计算结果做个保存,这样重启之后就可以继续处理新数据、而不需要重新计算了。进一步地,我们知道在有状态的流处理中,任务继续处理新数据,并不需要“之前的计算结果”,而是需要任务“之前的状态”。所以我们最终的选择,就是将之前某个时间点所有的状态保存下来,这份“存档”就是所谓的“检查点”(checkpoint)。遇到故障重启的时候,我们可以从检查点中“读档”,恢复出之前的状态,这样就可以回到当时保存的一刻接着处理数据了。检查点是Flink容错机制的核心。这里所谓的“检查”,其实是针对故障恢复的结果而言的:故障恢复之后继续处理的结果,应该与发生故障前完全一致,我们需要“检查”结果的正确性。所以,有时又会把checkpoint叫做“一致性检查点”。

14.1.1 检查点的保存

1. 周期性的触发保存

“随时存档”确实恢复起来方便,可是需要我们不停地做存档操作。如果每处理一条数据就进行检查点的保存,当大量数据同时到来时,就会耗费很多资源来频繁做检查点,数据处理的速度就会收到影响。所以更好的方式是,每隔一段时间去做一次存档,这样既不会影响数据的正常处理,也不会有太大的延迟——毕竟故障恢复的情况不是随时发生的。在Flink中,检查点的保存是周期性触发的,间隔时间可以进行设置。

所以检查点作为应用状态的一份“存档”,其实就是所有任务状态在同一时间点的一个“快照”(snapshot),它的触发是周期性的。具体来说,当每隔一段时间检查点保存操作被触发时,就把每个任务当前的状态复制一份,按照一定的逻辑结构放在一起持久化保存起来,就构成了检查点。

2. 保存的时间点

我们应该在所有任务都恰好处理完一个相同的输入数据的时候,将它们的状态保存下来。首先,这样避免了除状态之外其它额外信息的存储,提高了检查点保存的效率。其次,一个数据要么就是被所有任务完整地处理完,状态得到了保存;要么就是没处理完,状态全部没保存:这就相当于构建了一个“事务”(transaction)。如果出现故障,我们恢复到之前保存的状态,故障时正在处理的所有数据都需要重新处理;所以我们只需要让源(source)任务向数据源重新提交偏移量、请求重放数据就可以了。当然这需要源任务可以把偏移量作为算子状态保存下来,而且外部数据源能够重置偏移量;kafka就是满足这些要求的一个最好的例子。

3. 保存的具体流程

检查点的保存,最关键的就是要等所有任务将“同一个数据”处理完毕。下面我们通过一个具体的例子,来详细描述一下检查点具体的保存过程。回忆一下我们最初实现的统计词频的程序——word count。这里为了方便,我们直接从数据源读入已经分开的一个个单词,例如这里输入的就是:

“hello”,“world”,“hello”,“flink”,“hello”,“world”,“hello”,“flink”…

对应的代码就可以简化为:

SingleOutputStreamOperator<Tuple2<String, Long>> wordCountStream = 
env.addSource(...)
        .map(word -> Tuple2.of(word, 1L))
        .returns(Types.TUPLE(Types.STRING, Types.LONG));
        .keyBy(t -> t.f0);
        .sum(1);

源(Source)任务从外部数据源读取数据,并记录当前的偏移量,作为算子状态(Operator State)保存下来。然后将数据发给下游的Map任务,它会将一个单词转换成(word, count)二元组,初始count都是1,也就是(“hello”, 1)、(“world”, 1)这样的形式;这是一个无状态的算子任务。进而以word作为键(key)进行分区,调用.sum()方法就可以对count值进行求和统计了;Sum算子会把当前求和的结果作为按键分区状态(Keyed State)保存下来。最后得到的就是当前单词的频次统计(word, count),如图所示。

640.png

当我们需要保存检查点(checkpoint)时,就是在所有任务处理完同一条数据后,对状态做个快照保存下来。例如上图中,已经处理了3条数据:“hello”“world”“hello”,所以我们会看到Source算子的偏移量为3;后面的Sum算子处理完第三条数据“hello”之后,此时已经有2个“hello”和1个“world”,所以对应的状态为“hello”-> 2,“world”-> 1(这里KeyedState底层会以key-value形式存储)。此时所有任务都已经处理完了前三个数据,所以我们可以把当前的状态保存成一个检查点,写入外部存储中。至于具体保存到哪里,这是由状态后端的配置项“检查点存储”(CheckpointStorage)来决定的,可以有作业管理器的堆内存(JobManagerCheckpointStorage)和文件系统(FileSystemCheckpointStorage)两种选择。一般情况下,我们会将检查点写入持久化的分布式文件系统。

14.1.2 从检查点恢复状态

在运行流处理程序时,Flink会周期性地保存检查点。当发生故障时,就需要找到最近一次成功保存的检查点来恢复状态。例如在上节的word count示例中,我们处理完三个数据后保存了一个检查点。之后继续运行,又正常处理了一个数据“flink”,在处理第五个数据“hello”时发生了故障,如图所示。

640.png

这里Source任务已经处理完毕,所以偏移量为5;Map任务也处理完成了。而Sum任务在处理中发生了故障,此时状态并未保存。接下来就需要从检查点来恢复状态了。具体的步骤为:

(1)重启应用

遇到故障之后,第一步当然就是重启。我们将应用重新启动后,所有任务的状态会清空,如图所示。

640.png

(2)读取检查点,重置状态

找到最近一次保存的检查点,从中读出每个算子任务状态的快照,分别填充到对应的状态中。这样,Flink内部所有任务的状态,就恢复到了保存检查点的那一时刻,也就是刚好处理完第三个数据的时候,如图所示。

640.png


相关实践学习
基于Hologres轻松玩转一站式实时仓库
本场景介绍如何利用阿里云MaxCompute、实时计算Flink和交互式分析服务Hologres开发离线、实时数据融合分析的数据大屏应用。
Linux入门到精通
本套课程是从入门开始的Linux学习课程,适合初学者阅读。由浅入深案例丰富,通俗易懂。主要涉及基础的系统操作以及工作中常用的各种服务软件的应用、部署和优化。即使是零基础的学员,只要能够坚持把所有章节都学完,也一定会受益匪浅。
相关文章
|
1月前
|
存储 分布式计算 API
大数据-107 Flink 基本概述 适用场景 框架特点 核心组成 生态发展 处理模型 组件架构
大数据-107 Flink 基本概述 适用场景 框架特点 核心组成 生态发展 处理模型 组件架构
84 0
|
12天前
|
SQL 存储 数据库
【赵渝强老师】基于Flink的流批一体架构
本文介绍了Flink如何实现流批一体的系统架构,包括数据集成、数仓架构和数据湖的流批一体方案。Flink通过统一的开发规范和SQL支持,解决了传统架构中的多套技术栈、数据链路冗余和数据口径不一致等问题,提高了开发效率和数据一致性。
|
1月前
|
消息中间件 监控 Java
大数据-109 Flink 体系结构 运行架构 ResourceManager JobManager 组件关系与原理剖析
大数据-109 Flink 体系结构 运行架构 ResourceManager JobManager 组件关系与原理剖析
66 1
|
Java API 调度
Flink 原理与实现:架构和拓扑概览
## 架构 要了解一个系统,一般都是从架构开始。我们关心的问题是:系统部署成功后各个节点都启动了哪些服务,各个服务之间又是怎么交互和协调的。下方是 Flink 集群启动后架构图。 ![](http://img3.tbcdn.cn/5476e8b07b923/TB1ObBnJFXXXXXt
8032 0
|
2月前
|
运维 数据处理 数据安全/隐私保护
阿里云实时计算Flink版测评报告
该测评报告详细介绍了阿里云实时计算Flink版在用户行为分析与标签画像中的应用实践,展示了其毫秒级的数据处理能力和高效的开发流程。报告还全面评测了该服务在稳定性、性能、开发运维及安全性方面的卓越表现,并对比自建Flink集群的优势。最后,报告评估了其成本效益,强调了其灵活扩展性和高投资回报率,适合各类实时数据处理需求。
|
4月前
|
存储 监控 大数据
阿里云实时计算Flink在多行业的应用和实践
本文整理自 Flink Forward Asia 2023 中闭门会的分享。主要分享实时计算在各行业的应用实践,对回归实时计算的重点场景进行介绍以及企业如何使用实时计算技术,并且提供一些在技术架构上的参考建议。
824 7
阿里云实时计算Flink在多行业的应用和实践
|
20天前
|
存储 分布式计算 流计算
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
本文介绍了阿里云开源大数据团队在实时计算领域的最新成果——向量化流计算引擎Flash。文章主要内容包括:Apache Flink 成为业界流计算标准、Flash 核心技术解读、性能测试数据以及在阿里巴巴集团的落地效果。Flash 是一款完全兼容 Apache Flink 的新一代流计算引擎,通过向量化技术和 C++ 实现,大幅提升了性能和成本效益。
743 10
实时计算 Flash – 兼容 Flink 的新一代向量化流计算引擎
|
3月前
|
SQL 消息中间件 Kafka
实时计算 Flink版产品使用问题之如何在EMR-Flink的Flink SOL中针对source表单独设置并行度
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
17天前
|
SQL 运维 数据可视化
阿里云实时计算Flink版产品体验测评
阿里云实时计算Flink基于Apache Flink构建,提供一站式实时大数据分析平台,支持端到端亚秒级实时数据分析,适用于实时大屏、实时报表、实时ETL和风控监测等场景,具备高性价比、开发效率、运维管理和企业安全等优势。
zdl
|
8天前
|
消息中间件 运维 大数据
大数据实时计算产品的对比测评:实时计算Flink版 VS 自建Flink集群
本文介绍了实时计算Flink版与自建Flink集群的对比,涵盖部署成本、性能表现、易用性和企业级能力等方面。实时计算Flink版作为全托管服务,显著降低了运维成本,提供了强大的集成能力和弹性扩展,特别适合中小型团队和业务波动大的场景。文中还提出了改进建议,并探讨了与其他产品的联动可能性。总结指出,实时计算Flink版在简化运维、降低成本和提升易用性方面表现出色,是大数据实时计算的优选方案。
zdl
34 0

热门文章

最新文章

下一篇
无影云桌面