十三、状态管理
Flink处理机制的核心,就是“有状态的流式计算”。我们之前多次提到了“状态”(state),不论是简单聚合、窗口聚合,还是处理函数的应用,都会有状态的身影出现。在Flink这样的分布式系统中,我们不仅需要定义出状态在任务并行时的处理方式,还需要考虑如何持久化保存、以便发生故障时正确地恢复。这就需要一套完整的管理机制来处理所有的状态。
13.1 Flink中的状态
在流处理中,数据是连续不断到来和处理的。每个任务进行计算处理时,可以基于当前数据直接转换得到输出结果;也可以依赖一些其他数据。这些由一个任务维护,并且用来计算输出结果的所有数据,就叫作这个任务的状态。
13.1.1 有状态算子
在Flink中,算子任务可以分为无状态和有状态两种情况。无状态的算子任务只需要观察每个独立事件,根据当前输入的数据直接转换输出结果,如图所示。例如,可以将一个字符串类型的数据拆分开作为元组输出;也可以对数据做一些计算,比如每个代表数量的字段加1。我们之前讲到的基本转换算子,如map、filter、flatMap,计算时不依赖其他数据,就都属于无状态的算子。
而有状态的算子任务,则除当前数据之外,还需要一些其他数据来得到计算结果。这里的“其他数据”,就是所谓的状态(state),最常见的就是之前到达的数据,或者由之前数据计算出的某个结果。比如,做求和(sum)计算时,需要保存之前所有数据的和,这就是状态;窗口算子中会保存已经到达的所有数据,这些也都是它的状态。另外,如果我们希望检索到某种“事件模式”(event pattern),比如“先有下单行为,后有支付行为”,那么也应该把之前的行为保存下来,这同样属于状态。容易发现,之前讲过的聚合算子、窗口算子都属于有状态的算子。
如图所示为有状态算子的一般处理流程,具体步骤如下。
(1)算子任务接收到上游发来的数据; (2)获取当前状态; (3)根据业务逻辑进行计算,更新状态; (4)得到计算结果,输出发送到下游任务。
13.1.2 状态的管理
在传统的事务型处理架构中,这种额外的状态数据是保存在数据库中的。而对于实时流处理来说,这样做需要频繁读写外部数据库,如果数据规模非常大肯定就达不到性能要求了。所以Flink的解决方案是,将状态直接保存在内存中来保证性能,并通过分布式扩展来提高吞吐量。在Flink中,每一个算子任务都可以设置并行度,从而可以在不同的slot上并行运行多个实例,我们把它们叫作“并行子任务”。而状态既然在内存中,那么就可以认为是子任务实例上的一个本地变量,能够被任务的业务逻辑访问和修改。
这样看来状态的管理似乎非常简单,我们直接把它作为一个对象交给JVM就可以了。然而大数据的场景下,我们必须使用分布式架构来做扩展,在低延迟、高吞吐的基础上还要保证容错性,一系列复杂的问题就会随之而来了。
1.状态的访问权限。我们知道Flink上的聚合和窗口操作,一般都是基于KeyedStream的,数据会按照key的哈希值进行分区,聚合处理的结果也应该是只对当前key有效。然而同一个分区(也就是slot)上执行的任务实例,可能会包含多个key的数据,它们同时访问和更改本地变量,就会导致计算结果错误。所以这时状态并不是单纯的本地变量。 2.容错性,也就是故障后的恢复。状态只保存在内存中显然是不够稳定的,我们需要将它持久化保存,做一个备份;在发生故障后可以从这个备份中恢复状态。 3.我们还应该考虑到分布式应用的横向扩展性。比如处理的数据量增大时,我们应该相应地对计算资源扩容,调大并行度。这时就涉及到了状态的重组调整。
可见状态的管理并不是一件轻松的事。好在Flink作为有状态的大数据流式处理框架,已经帮我们搞定了这一切。Flink有一套完整的状态管理机制,将底层一些核心功能全部封装起来,包括状态的高效存储和访问、持久化保存和故障恢复,以及资源扩展时的调整。这样,我们只需要调用相应的API就可以很方便地使用状态,或对应用的容错机制进行配置,从而将更多的精力放在业务逻辑的开发上。
13.1.3 状态的分类
1. 托管状态(Managed State)和原始状态(Raw State)
Flink的状态有两种:托管状态(Managed State)和原始状态(Raw State)。托管状态就是由Flink统一管理的,状态的存储访问、故障恢复和重组等一系列问题都由Flink实现,我们只要调接口就可以;而原始状态则是自定义的,相当于就是开辟了一块内存,需要我们自己管理,实现状态的序列化和故障恢复。具体来讲,托管状态是由Flink的运行时(Runtime)来托管的;在配置容错机制后,状态会自动持久化保存,并在发生故障时自动恢复。当应用发生横向扩展时,状态也会自动地重组分配到所有的子任务实例上。对于具体的状态内容,Flink也提供了值状态(ValueState)、列表状态(ListState)、映射状态(MapState)、聚合状态(AggregateState)等多种结构,内部支持各种数据类型。聚合、窗口等算子中内置的状态,就都是托管状态;我们也可以在富函数类(RichFunction)中通过上下文来自定义状态,这些也都是托管状态。而对比之下,原始状态就全部需要自定义了。Flink不会对状态进行任何自动操作,也不知道状态的具体数据类型,只会把它当作最原始的字节(Byte)数组来存储。我们需要花费大量的精力来处理状态的管理和维护。所以只有在遇到托管状态无法实现的特殊需求时,我们才会考虑使用原始状态;一般情况下不推荐使用。绝大多数应用场景,我们都可以用Flink提供的算子或者自定义托管状态来实现需求。
2. 算子状态(Operator State)和按键分区状态(Keyed State)
接下来我们的重点就是托管状态(Managed State)。我们知道在Flink中,一个算子任务会按照并行度分为多个并行子任务执行,而不同的子任务会占据不同的任务槽(task slot)。由于不同的slot在计算资源上是物理隔离的,所以Flink能管理的状态在并行任务间是无法共享的,每个状态只能针对当前子任务的实例有效。而很多有状态的操作(比如聚合、窗口)都是要先做keyBy进行按键分区的。按键分区之后,任务所进行的所有计算都应该只针对当前key有效,所以状态也应该按照key彼此隔离。在这种情况下,状态的访问方式又会有所不同。基于这样的想法,我们又可以将托管状态分为两类:算子状态和按键分区状态。
(1)算子状态(Operator State)
状态作用范围限定为当前的算子任务实例,也就是只对当前并行子任务实例有效。这就意味着对于一个并行子任务,占据了一个“分区”,它所处理的所有数据都会访问到相同的状态,状态对于同一任务而言是共享的,如图所示。
算子状态可以用在所有算子上,使用的时候其实就跟一个本地变量没什么区别——因为本地变量的作用域也是当前任务实例。在使用时,我们还需进一步实现CheckpointedFunction接口。
(2)按键分区状态(Keyed State)
状态是根据输入流中定义的键(key)来维护和访问的,所以只能定义在按键分区流(KeyedStream)中,也就keyBy之后才可以使用,如图所示。
按键分区状态应用非常广泛。之前讲到的聚合算子必须在keyBy之后才能使用,就是因为聚合的结果是以Keyed State的形式保存的。另外,也可以通过富函数类(Rich Function)来自定义Keyed State,所以只要提供了富函数类接口的算子,也都可以使用Keyed State。
所以即使是map、filter这样无状态的基本转换算子,我们也可以通过富函数类给它们“追加”Keyed State,或者实现CheckpointedFunction接口来定义Operator State;从这个角度讲,Flink中所有的算子都可以是有状态的,不愧是“有状态的流处理”。
无论是Keyed State还是Operator State,它们都是在本地实例上维护的,也就是说每个并行子任务维护着对应的状态,算子的子任务之间状态不共享。
13.2 按键分区状态(Keyed State)
在实际应用中,我们一般都需要将数据按照某个key进行分区,然后再进行计算处理;所以最为常见的状态类型就是Keyed State。之前介绍到keyBy之后的聚合、窗口计算,算子所持有的状态,都是Keyed State。另外,我们还可以通过富函数类(Rich Function)对转换算子进行扩展、实现自定义功能,比如RichMapFunction、RichFilterFunction。在富函数中,我们可以调用.getRuntimeContext()获取当前的运行时上下文(RuntimeContext),进而获取到访问状态的句柄;这种富函数中自定义的状态也是Keyed State。
13.2.1 基本概念和特点
按键分区状态(Keyed State)顾名思义,是任务按照键(key)来访问和维护的状态。它的特点非常鲜明,就是以key为作用范围进行隔离。
我们知道,在进行按键分区(keyBy)之后,具有相同键的所有数据,都会分配到同一个并行子任务中;所以如果当前任务定义了状态,Flink就会在当前并行子任务实例中,为每个键值维护一个状态的实例。于是当前任务就会为分配来的所有数据,按照key维护和处理对应的状态。
因为一个并行子任务可能会处理多个key的数据,所以Flink需要对Keyed State进行一些特殊优化。在底层,Keyed State类似于一个分布式的映射(map)数据结构,所有的状态会根据key保存成键值对(key-value)的形式。这样当一条数据到来时,任务就会自动将状态的访问范围限定为当前数据的key,从map存储中读取出对应的状态值。所以具有相同key的所有数据都会到访问相同的状态,而不同key的状态之间是彼此隔离的。
这种将状态绑定到key上的方式,相当于使得状态和流的逻辑分区一一对应了:不会有别的key的数据来访问当前状态;而当前状态对应key的数据也只会访问这一个状态,不会分发到其他分区去。这就保证了对状态的操作都是本地进行的,对数据流和状态的处理做到了分区一致性。
另外,在应用的并行度改变时,状态也需要随之进行重组。不同key对应的Keyed State可以进一步组成所谓的键组(key groups),每一组都对应着一个并行子任务。键组是Flink重新分配Keyed State的单元,键组的数量就等于定义的最大并行度。当算子并行度发生改变时,Keyed State就会按照当前的并行度重新平均分配,保证运行时各个子任务的负载相同。
需要注意,使用Keyed State必须基于KeyedStream。没有进行keyBy分区的DataStream,即使转换算子实现了对应的富函数类,也不能通过运行时上下文访问Keyed State。
13.2.2 支持的结构类型
实际应用中,需要保存为状态的数据会有各种各样的类型,有时还需要复杂的集合类型,比如列表(List)和映射(Map)。对于这些常见的用法,Flink的按键分区状态(Keyed State)提供了足够的支持。接下来我们就来了解一下Keyed State 所支持的结构类型.
1. 值状态(ValueState)
顾名思义,状态中只保存一个“值”(value)。ValueState本身是一个接口,源码中定义如下:
public interface ValueState<T> extends State { T value() throws IOException; void update(T value) throws IOException; }
这里的T是泛型,表示状态的数据内容可以是任何具体的数据类型。如果想要保存一个长整型值作为状态,那么类型就是ValueState。我们可以在代码中读写值状态,实现对于状态的访问和更新。
T value():获取当前状态的值; update(T value):对状态进行更新,传入的参数value就是要覆写的状态值。
在具体使用时,为了让运行时上下文清楚到底是哪个状态,我们还需要创建一个“状态描述器”(StateDescriptor)来提供状态的基本信息。例如源码中,ValueState的状态描述器构造方法如下:
public ValueStateDescriptor(String name, Class<T> typeClass) { super(name, typeClass, null); }
这里需要传入状态的名称和类型——这跟我们声明一个变量时做的事情完全一样。有了这个描述器,运行时环境就可以获取到状态的控制句柄(handler)了。关于代码中状态的使用,我们会在下一节详细介绍。
2. 列表状态(ListState)
将需要保存的数据,以列表(List)的形式组织起来。在ListState接口中同样有一个类型参数T,表示列表中数据的类型。ListState也提供了一系列的方法来操作状态,使用方式与一般的List非常相似。
Iterable<T> get():获取当前的列表状态,返回的是一个可迭代类型Iterable<T>; update(List<T> values):传入一个列表values,直接对状态进行覆盖; add(T value):在状态列表中添加一个元素value; addAll(List<T> values):向列表中添加多个元素,以列表values形式传入。
类似地,ListState的状态描述器就叫作ListStateDescriptor,用法跟ValueStateDescriptor完全一致。
3. 映射状态(MapState)
把一些键值对(key-value)作为状态整体保存起来,可以认为就是一组key-value映射的列表。对应的MapState<UK, UV>接口中,就会有UK、UV两个泛型,分别表示保存的key和value的类型。同样,MapState提供了操作映射状态的方法,与Map的使用非常类似。
UV get(UK key):传入一个key作为参数,查询对应的value值; put(UK key, UV value):传入一个键值对,更新key对应的value值; putAll(Map<UK, UV> map):将传入的映射map中所有的键值对,全部添加到映射状态中; remove(UK key):将指定key对应的键值对删除; boolean contains(UK key):判断是否存在指定的key,返回一个boolean值。 另外,MapState也提供了获取整个映射相关信息的方法: Iterable<Map.Entry<UK, UV>> entries():获取映射状态中所有的键值对; Iterable<UK> keys():获取映射状态中所有的键(key),返回一个可迭代Iterable类型; Iterable<UV> values():获取映射状态中所有的值(value),返回一个可迭代Iterable类型; boolean isEmpty():判断映射是否为空,返回一个boolean值。
4. 归约状态(ReducingState)
类似于值状态(Value),不过需要对添加进来的所有数据进行归约,将归约聚合之后的值作为状态保存下来。ReducintState这个接口调用的方法类似于ListState,只不过它保存的只是一个聚合值,所以调用.add()方法时,不是在状态列表里添加元素,而是直接把新数据和之前的状态进行归约,并用得到的结果更新状态。
归约逻辑的定义,是在归约状态描述器(ReducingStateDescriptor)中,通过传入一个归约函数(ReduceFunction)来实现的。这里的归约函数,就是我们之前介绍reduce聚合算子时讲到的ReduceFunction,所以状态类型跟输入的数据类型是一样的。
public ReducingStateDescriptor( String name, ReduceFunction<T> reduceFunction, Class<T> typeClass) {...}
这里的描述器有三个参数,其中第二个参数就是定义了归约聚合逻辑的ReduceFunction,另外两个参数则是状态的名称和类型。
5. 聚合状态(AggregatingState)
与归约状态非常类似,聚合状态也是一个值,用来保存添加进来的所有数据的聚合结果。与ReducingState不同的是,它的聚合逻辑是由在描述器中传入一个更加一般化的聚合函数(AggregateFunction)来定义的;这也就是之前我们讲过的AggregateFunction,里面通过一个累加器(Accumulator)来表示状态,所以聚合的状态类型可以跟添加进来的数据类型完全不同,使用更加灵活。
同样地,AggregatingState接口调用方法也与ReducingState相同,调用.add()方法添加元素时,会直接使用指定的AggregateFunction进行聚合并更新状态。
13.2.3 代码实现
了解了按键分区状态(Keyed State)的基本概念和类型,接下来我们就可以尝试在代码中使用状态了。
1. 整体介绍
在 Flink 中,状态始终是与特定算子相关联的;算子在使用状态前首先需要“注册”,其实就是告诉Flink当前上下文中定义状态的信息,这样运行时的 Flink 才能知道算子有哪些状态。
状态的注册,主要是通过“状态描述器”(StateDescriptor)来实现的。状态描述器中最重要的内容,就是状态的名称(name)和类型(type)。我们知道Flink中的状态,可以认为是加了一些复杂操作的内存中的变量;而当我们在代码中声明一个局部变量时,都需要指定变量类型和名称,名称就代表了变量在内存中的地址,类型则指定了占据内存空间的大小。同样地,我们一旦指定了名称和类型,Flink就可以在运行时准确地在内存中找到对应的状态,进而返回状态对象供我们使用了。所以在一个算子中,我们也可以定义多个状态,只要它们的名称不同就可以了。
另外,状态描述器中还可能需要传入一个用户自定义函数(user-defined-function,UDF),用来说明处理逻辑,比如前面提到的ReduceFunction和AggregateFunction。以ValueState为例,我们可以定义值状态描述器如下:
ValueStateDescriptor<Long> descriptor = new ValueStateDescriptor<>( "my state", // 状态名称 Types.LONG // 状态类型 );
这里我们定义了一个叫作“my state”的长整型ValueState的描述器。代码中完整的操作是,首先定义出状态描述器;然后调用.getRuntimeContext()方法获取运行时上下文;继而调用RuntimeContext的获取状态的方法,将状态描述器传入,就可以得到对应的状态了。因为状态的访问需要获取运行时上下文,这只能在富函数类(Rich Function)中获取到,所以自定义的Keyed State只能在富函数中使用。当然,底层的处理函数(Process Function)本身继承了AbstractRichFunction抽象类,所以也可以使用。在富函数中,调用.getRuntimeContext()方法获取到运行时上下文之后,RuntimeContext有以下几个获取状态的方法:
ValueState<T> getState(ValueStateDescriptor<T>) MapState<UK, UV> getMapState(MapStateDescriptor<UK, UV>) ListState<T> getListState(ListStateDescriptor<T>) ReducingState<T> getReducingState(ReducingStateDescriptor<T>) AggregatingState<IN, OUT> getAggregatingState(AggregatingStateDescriptor<IN, ACC, OUT>)
对于不同结构类型的状态,只要传入对应的描述器、调用对应的方法就可以了。获取到状态对象之后,就可以调用它们各自的方法进行读写操作了。另外,所有类型的状态都有一个方法.clear(),用于清除当前状态。代码中使用状态的整体结构如下:
public static class MyFlatMapFunction extends RichFlatMapFunction<Long, String> { // 声明状态 private transient ValueState<Long> state; @Override public void open(Configuration config) { // 在open生命周期方法中获取状态 ValueStateDescriptor<Long> descriptor = new ValueStateDescriptor<>( "my state", // 状态名称 Types.LONG // 状态类型 ); state = getRuntimeContext().getState(descriptor); } @Override public void flatMap(Long input, Collector<String> out) throws Exception { // 访问状态 Long currentState = state.value(); currentState += 1; // 状态数值加1 // 更新状态 state.update(currentState); if (currentState >= 100) { out.collect(“state: ” + currentState); state.clear(); // 清空状态 } } }
因为RichFlatmapFunction中的.flatmap()是每来一条数据都会调用一次的,所以我们不应该在这里调用运行时上下文的.getState()方法,而是在生命周期方法.open()中获取状态对象。另外还有一个问题,我们获取到的状态对象也需要有一个变量名称state,但这个变量不应该在open中声明——否则在.flatmap()里就访问不到了。所以我们还需要在外面直接把它定义为类的属性,这样就可以在不同的方法中通用了。而在外部又不能直接获取状态,因为编译时是无法拿到运行时上下文的。所以最终的解决方案就变成了:在外部声明状态对象,在open生命周期方法中通过运行时上下文获取状态。
这里需要注意,这种方式定义的都是Keyed State,它对于每个key都会保存一份状态实例。所以对状态进行读写操作时,获取到的状态跟当前输入数据的key有关;只有相同key的数据,才会操作同一个状态,不同key的数据访问到的状态值是不同的。而且上面提到的.clear()方法,也只会清除当前key对应的状态。下面我们给出一些不同类型状态的应用实例。
1. 值状态(ValueState)
我们这里会使用用户id来进行分流,然后分别统计每个用户的pv数据,由于我们并不想每次pv加一,就将统计结果发送到下游去,所以这里我们注册了一个定时器,用来隔一段时间发送pv的统计结果,这样对下游算子的压力不至于太大。
具体实现方式是定义一个用来保存定时器时间戳的值状态变量。当定时器触发并向下游发送数据以后,便清空储存定时器时间戳的状态变量,这样当新的数据到来时,发现并没有定时器存在,就可以注册新的定时器了,注册完定时器之后将定时器的时间戳继续保存在状态变量中。
public class ValueStateExample { public static void main(String[] args) throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setParallelism(1); env .addSource(new ClickSource()) .assignTimestampsAndWatermarks( WatermarkStrategy.<Event>forMonotonousTimestamps() .withTimestampAssigner(new SerializableTimestampAssigner<Event>() { @Override public long extractTimestamp(Event element, long recordTimestamp) { return element.timestamp; } }) ) .keyBy(r -> r.user) .process(new KeyedProcessFunction<String, Event, String>() { private ValueState<Long> valueState; private ValueState<Long> timerTs; @Override public void open(Configuration parameters) throws Exception { super.open(parameters); valueState = getRuntimeContext().getState(new ValueStateDescriptor<Long>("pv", Types.LONG)); } @Override public void processElement(Event value, Context ctx, Collector<String> out) throws Exception { if (valueState.value() == null) { valueState.update(1L); } else { valueState.update(valueState.value() + 1L); } if (timerTs.value() == null) { ctx.timerService().registerEventTimeTimer(value.timestamp + 10 * 1000L); timerTs.update(value.timestamp + 10 * 1000L); } } @Override public void onTimer(long timestamp, OnTimerContext ctx, Collector<String> out) throws Exception { super.onTimer(timestamp, ctx, out); out.collect("用户 " + ctx.getCurrentKey() + " 的PV是:" + valueState.value()); timerTs.clear(); } }) .print(); env.execute(); } }
2. 映射状态(MapState)
映射状态的用法和Java中的HashMap很相似。在这里我们可以通过MapState的使用来探索一下窗口的底层实现,也就是我们要用映射状态来完整模拟窗口的功能。这里我们模拟一个滚动窗口。我们要计算的是每一个url在每一个窗口中的pv数据。我们之前使用增量聚合和全窗口聚合结合的方式实现过这个需求。这里我们用MapState再来实现一下。
// 使用KeyedProcessFunction模拟滚动窗口 public class FakeWindowExample { public static void main(String[] args) throws Exception { StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment(); env.setParallelism(1); env .addSource(new ClickSource()) .assignTimestampsAndWatermarks(WatermarkStrategy.<Event>forBoundedOutOfOrderness(Duration.ofSeconds(0)) .withTimestampAssigner(new SerializableTimestampAssigner<Event>() { @Override public long extractTimestamp(Event event, long l) { return event.timestamp; } })) .keyBy(r -> r.url) .process(new FakeWindow(5000L)) .print(); env.execute(); } public static class FakeWindow extends KeyedProcessFunction<String, Event, String> { // 窗口的开始时间 -> 窗口中的pv private MapState<Long, Long> mapState; // 滚动窗口的长度 private Long windowSize; public FakeWindow(Long windowSize) { this.windowSize = windowSize; } @Override public void open(Configuration parameters) throws Exception { super.open(parameters); mapState = getRuntimeContext().getMapState( new MapStateDescriptor<Long, Long>("window-pv", Types.LONG, Types.LONG) ); } @Override public void processElement(Event event, Context context, Collector<String> collector) throws Exception { long windowStart = event.timestamp - event.timestamp % windowSize; long windowEnd = windowStart + windowSize; context.timerService().registerEventTimeTimer(windowEnd – 1); if (mapState.contains(windowStart)) { long pv = mapState.get(windowStart); mapState.put(windowStart, pv + 1L); } else { mapState.put(windowStart, 1L); } } @Override public void onTimer(long timestamp, OnTimerContext ctx, Collector<String> out) throws Exception { super.onTimer(timestamp, ctx, out); long start = timestamp + 1L - windowSize; long end = timestamp + 1L; out.collect(ctx.getCurrentKey() + ":" + new Timestamp(start) + "~" + new Timestamp(end) + ":" + mapState.get(start)); // 删除窗口,因为窗口的默认操作是计算完成以后销毁窗口 mapState.remove(start); } }