【建议收藏】Mysql+Flink CDC+Doris 数据同步实战(下)

本文涉及的产品
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
实时计算 Flink 版,5000CU*H 3个月
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 【建议收藏】Mysql+Flink CDC+Doris 数据同步实战

配置文件

doris
├── doris.conf
├── flink.conf
└── tables
mysql
├── flink.conf
├── mysql.conf
└── tables
flink
├── flink_conf
注意mysql的tables和doris的tables是一一对应的关系

文件详解

```mysql中flink.conf
-- 指定binlog消费方式
'scan.startup.mode' = 'initial'
```flink.conf
-- 运行的yarn模式,需要用户配置flink on yarn
set 'execution.target' = 'yarn-per-job';
-- 运行的yarn任务的名称
set 'yarn.application.name' = 'flinkjob_database';
-- checkpoint配置
set 'state.backend' = 'filesystem';
set 'state.checkpoints.dir' = 'hdfs:///ck';
set 'execution.checkpointing.interval' = '6000';
set 'execution.checkpointing.tolerable-failed-checkpoints' = '1';
set 'execution.checkpointing.timeout' ='600000';
set 'execution.checkpointing.externalized-checkpoint-retention' = 'RETAIN_ON_CANCELLATION';
set 'execution.checkpointing.mode' = 'EXACTLY_ONCE';
set 'execution.checkpointing.max-concurrent-checkpoints' = '1';
-- 资源配置
set 'jobmanager.memory.process.size' = '1600m';
set 'taskmanager.memory.process.size' = '1780m';
set 'taskmanager.memory.managed.size' = '100m';
set 'taskmanager.numberoftaskslots' = '1';
```doris中flink.conf
-- 两阶段提交
'sink.properties.two_phase_commit' = 'true'

开始执行,去bin目录下执行脚本生成文件

文件生成格式:

每个Mysql库等于一个Flink任务等于一个Flink脚本文件

每个Flink脚本文件由一个Mysql脚本语句和一个Doris映射语句和一个insert同步语句构成

所以生成格式为

mysql_db.sql
doris_mysqldb.sql
insert_mysqldb.sql
flink_mysqldb.sql

原因如下:

首先为了统一命名格式便于理解

其次如果以doris库命名很有可能mysql10个库同步至doris一个库当中,就导致只会生成一个flinkjob

测试先:准备好insert_into和delete语句

INSERT INTO emp_2.employees_2 VALUES (11,'1962-11-07','Kenroku','Malabarba','M','1994-04-09'),
(22,'1962-11-19','Somnath','Foote','M','1990-02-16'),
(33,'1959-07-23','Xinglin','Eugenio','F','1986-09-08'),
(44,'1954-02-25','Jungsoon','Syrzycki','F','1988-09-02')
delete from emp_2.employees_2 where emp_no = 11;
delete from emp_2.employees_2 where emp_no = 22;
delete from emp_2.employees_2 where emp_no = 33;
delete from emp_2.employees_2 where emp_no = 44;
update emp_2.employees_2 set first_name = 'toms' where emp_no = 10091 ;
update emp_2.employees_2 set first_name = 'toms' where emp_no= 10092;
update emp_2.employees_2 set first_name = 'toms' where emp_no = 10093;
update emp_2.employees_2 set first_name = 'toms' where emp_no = 10094;
统计语句
use emp_1;
select count(1) from employees_1;
select count(1) from employees_2;
use emp_2;
select count(1) from employees_1;
select count(1) from employees_2;

insert端的实现:

for m_table in $(cat ../conf/mysql/tables |grep -v '#' | awk -F '\n' '{print $1}')
        do
        let a++
        m_d=`cat ../conf/mysql/tables |grep -v '#' | awk "NR==$a{print}" |awk -F '.' '{print $1}'`
        d_table=`cat ../conf/doris/tables |grep -v '#' | awk "NR==$a{print}"`
        sed "/$d_table$sink/,/KEY(/{//d;s/ *//;p};d" ../result/doris_$m_d.sql |awk '!x[$0]++' |awk '{print $0}'| awk -F '`' '{print $2}'|awk -F '\n' '{print $1","}' |sed '$s/.$//' > a.c
        ac=`cat a.c`
        m_d=`echo $m_table | awk -F '.' '{print $1}'`
        echo -e "insert into \`$d_table$sink\`\nselect\n${ac}\nfrom\n\`$m_table$src\`\nwhere 1=1;\n\n" >> ../result/insert_$m_d.sql
        rm -rf a.c
done
CREATE TABLE `demo.all_employees_info_sink1` (
  `emp_no` int NOT NULL COMMENT '',
  `birth_date` date NULL COMMENT '',
  `first_name` varchar(20) NULL COMMENT '',
  `last_name` varchar(20) NULL COMMENT '',
  `gender` string NULL COMMENT '',
  `hire_date` date NULL COMMENT '',
  `database_name` varchar(50) NULL COMMENT '',
  `table_name` varchar(200) NULL COMMENT '',
PRIMARY KEY(`emp_no`, `birth_date`)
NOT ENFORCED
 ) with (
'sink.properties.two_phase_commit' = 'true',
'fenodes' = '192.168.213.162:8031',
'username' = 'root',
'password' = 'zykj2021',
'table.identifier' = 'demo.all_employees_info',
'connector' = 'doris',
'sink.label-prefix' = 'emp_1_employees_1_220928_000418_1');

source端的实现:

label=0
for t_name in $(cat ../conf/doris/tables | awk -F '\n' '{print $1}' | awk -F '.' '{print $2}')
        do
        let label++
        d_label=`cat ../conf/mysql/tables | awk "NR == $label"{print} |sed 's/\./\_/g'`
        m_d=`cat ../conf/mysql/tables | awk "NR == $label"{print}|awk -F '.' '{print $1}'`
        d_d=`cat ../conf/doris/tables | awk "NR == $label"{print}|awk -F '.' '{print $1}'`
        m_t=`cat ../conf/mysql/tables | awk "NR == $label"{print}|awk -F '.' '{print $2}'`
        sed -i "0,/doris_username/s/doris_username/${fe_master_username}/" ../result/$t.sql
        sed -i "0,/doris_password/s/doris_password/${fe_master_password}/" ../result/$t.sql
        sed -i "0,/doris_table/s/doris_table/${d_d}.${t_name}/" ../result/$t.sql
        sed -i "0,/doris_connector/s/doris_connector/doris/" ../result/$t.sql
        sed -i "0,/doris_fenodes/s/doris_fenodes/${fe_master_host}:${fe_load_url_port}/" ../result/$t.sql
        sed -i "0,/doris_label\-prefix/s/doris_label\-prefix/${m_d}_${m_t}\_`date "+%y%m%d_%H%M%S"_$label`/" ../result/$t.sql
done
create table if not exists `demo.all_employees_info_sink1` (
  `emp_no` int not null comment '',
  `birth_date` date null comment '',
  `first_name` varchar(20) null comment '',
  `last_name` varchar(20) null comment '',
  `gender` string null comment '',
  `hire_date` date null comment '',
  `database_name` varchar(50) null comment '',
  `table_name` varchar(200) null comment '',
primary key(`emp_no`, `birth_date`)
not enforced
 ) with (
'sink.properties.two_phase_commit' = 'true',
'fenodes' = '192.168.213.162:8031',
'username' = 'root',
'password' = 'zykj2021',
'table.identifier' = 'demo.all_employees_info',
'connector' = 'doris',
'sink.label-prefix' = 'emp_1_employees_1_220928_000418_1');

sink端的实现:

for i in $(cat ../conf/mysql/tables |grep -v '#' | awk -F '\n' '{print $1}'|awk -F '.' '{print $1}' |sort -u)
        do
        sed -i '1iBEGIN STATEMENT SET;' ../result/insert_$i.sql
        sed -i '$aEND;' ../result/insert_$i.sql
        b=0
        for table in $(cat ../conf/doris/tables |grep -v '#' | awk -F '\n' '{print $1}')
                do
                let b++
                d_doris=`cat ../conf/doris/tables |grep -v '#' | awk "NR==$b"`
                sed -i "0,/into \`${d_doris}_sink\`/s/into \`${d_doris}_sink\`/into \`${d_doris}_sink${b}\`/" ../result/insert_$i.sql
        done
done
create table if not exists `demo.all_employees_info_sink1` (
  `emp_no` int not null comment '',
  `birth_date` date null comment '',
  `first_name` varchar(20) null comment '',
  `last_name` varchar(20) null comment '',
  `gender` string null comment '',
  `hire_date` date null comment ''
primary key(`emp_no`, `birth_date`)
not enforced
 ) with (
'sink.properties.two_phase_commit' = 'true',
'fenodes' = '192.168.213.162:8031',
'username' = 'root',
'password' = 'zykj2021',
'table.identifier' = 'demo.all_employees_info',
'connector' = 'doris',
'sink.label-prefix' = 'emp_1_employees_1_220928_000418_1');

实现从checkpoint恢复任务:

1、小的改动:

  • 获取从job的web获取到checkpoint的url(注意每30s都会更改一次)
  • 修改文件内容
  • 修改label
  • 修改最终的checkpointurl

    640.png
  • 保存文件

碰到的问题:调整sql,相当变更算子,这时执行重新checkpoit会报错,需忽略这些新算子

Caused by: java.lang.IllegalStateException: Failed to rollback to checkpoint/savepoint hdfs://127.0.0.1/fck/78f7cb6b577fe6db19648ca63607e640/chk-66. Cannot map checkpoint/savepoint state for operator e75d4004e6c5f0908bd4077fcf200fcd to the new program, because the operator is not available in the new program. If you want to allow to skip this, you can set the --allowNonRestoredState option on the CLI.

640.png

2、大的改动

  • cp出一份mysql_to_doris
  • 重新配置表结构,执行sh flinkjob.sh
  • 复制文件
  • 整体粘贴
  • 配置最终checkpoint的url

6、展望:

  • 代码优化,将变量重新命名,调整格式以及通过变量简化代码量
  • 数据类型转换规范化,在此基础上继续填充
  • 优化checkpoint点,达到只需修改配置项即可同步的效果


相关实践学习
每个IT人都想学的“Web应用上云经典架构”实战
本实验从Web应用上云这个最基本的、最普遍的需求出发,帮助IT从业者们通过“阿里云Web应用上云解决方案”,了解一个企业级Web应用上云的常见架构,了解如何构建一个高可用、可扩展的企业级应用架构。
MySQL数据库入门学习
本课程通过最流行的开源数据库MySQL带你了解数据库的世界。   相关的阿里云产品:云数据库RDS MySQL 版 阿里云关系型数据库RDS(Relational Database Service)是一种稳定可靠、可弹性伸缩的在线数据库服务,提供容灾、备份、恢复、迁移等方面的全套解决方案,彻底解决数据库运维的烦恼。 了解产品详情: https://www.aliyun.com/product/rds/mysql 
相关文章
|
4月前
|
数据采集 SQL canal
Amoro + Flink CDC 数据融合入湖新体验
本文总结了货拉拉高级大数据开发工程师陈政羽在Flink Forward Asia 2024上的分享,聚焦Flink CDC在货拉拉的应用与优化。内容涵盖CDC应用现状、数据入湖新体验、入湖优化及未来规划。文中详细分析了CDC在多业务场景中的实践,包括数据采集平台化、稳定性建设,以及面临的文件碎片化、Schema演进等挑战。同时介绍了基于Apache Amoro的湖仓融合架构,通过自优化服务解决小文件问题,提升数据新鲜度与读写平衡。未来将深化Paimon与Amoro的结合,打造更高效的入湖生态与自动化优化方案。
216 1
Amoro + Flink CDC 数据融合入湖新体验
|
4月前
|
SQL 关系型数据库 MySQL
Flink CDC 3.4 发布, 优化高频 DDL 处理,支持 Batch 模式,新增 Iceberg 支持
Apache Flink CDC 3.4.0 版本正式发布!经过4个月的开发,此版本强化了对高频表结构变更的支持,新增 batch 执行模式和 Apache Iceberg Sink 连接器,可将数据库数据全增量实时写入 Iceberg 数据湖。51位贡献者完成了259次代码提交,优化了 MySQL、MongoDB 等连接器,并修复多个缺陷。未来 3.5 版本将聚焦脏数据处理、数据限流等能力及 AI 生态对接。欢迎下载体验并提出反馈!
728 1
Flink CDC 3.4 发布, 优化高频 DDL 处理,支持 Batch 模式,新增 Iceberg 支持
|
5月前
|
SQL API Apache
Dinky 和 Flink CDC 在实时整库同步的探索之路
本次分享围绕 Dinky 的整库同步技术演进,从传统数据集成方案的痛点出发,探讨了 Flink CDC Yaml 作业的探索历程。内容分为三个部分:起源、探索、未来。在起源部分,分析了传统数据集成方案中全量与增量割裂、时效性低等问题,引出 Flink CDC 的优势;探索部分详细对比了 Dinky CDC Source 和 Flink CDC Pipeline 的架构与能力,深入讲解了 YAML 作业的细节,如模式演变、数据转换等;未来部分则展望了 Dinky 对 Flink CDC 的支持与优化方向,包括 Pipeline 转换功能、Transform 扩展及实时湖仓治理等。
640 12
Dinky 和 Flink CDC 在实时整库同步的探索之路
|
3月前
|
消息中间件 SQL 关系型数据库
Flink CDC + Kafka 加速业务实时化
Flink CDC 是一种支持流批一体的分布式数据集成工具,通过 YAML 配置实现数据传输过程中的路由与转换操作。它已从单一数据源的 CDC 数据流发展为完整的数据同步解决方案,支持 MySQL、Kafka 等多种数据源和目标端(如 Delta Lake、Iceberg)。其核心功能包括多样化数据输入链路、Schema Evolution、Transform 和 Routing 模块,以及丰富的监控指标。相比传统 SQL 和 DataStream 作业,Flink CDC 提供更灵活的 Schema 变更控制和原始 binlog 同步能力。
|
6月前
|
Oracle 关系型数据库 Java
【YashanDB知识库】Flink CDC实时同步Oracle数据到崖山
本文介绍通过Flink CDC实现Oracle数据实时同步至崖山数据库(YashanDB)的方法,支持全量与增量同步,并涵盖新增、修改和删除的DML操作。内容包括环境准备(如JDK、Flink版本等)、Oracle日志归档启用、用户权限配置、增量日志记录设置、元数据迁移、Flink安装与配置、生成Flink SQL文件、Streampark部署,以及创建和启动实时同步任务的具体步骤。适合需要跨数据库实时同步方案的技术人员参考。
【YashanDB知识库】Flink CDC实时同步Oracle数据到崖山
|
6月前
|
关系型数据库 MySQL 数据库
基于Flink CDC 开发,支持Web-UI的实时KingBase 连接器,三大模式无缝切换,效率翻倍!
TIS 是一款基于Web-UI的开源大数据集成工具,通过与人大金仓Kingbase的深度整合,提供高效、灵活的实时数据集成方案。它支持增量数据监听和实时写入,兼容MySQL、PostgreSQL和Oracle模式,无需编写复杂脚本,操作简单直观,特别适合非专业开发人员使用。TIS率先实现了Kingbase CDC连接器的整合,成为业界首个开箱即用的Kingbase CDC数据同步解决方案,助力企业数字化转型。
982 5
基于Flink CDC 开发,支持Web-UI的实时KingBase 连接器,三大模式无缝切换,效率翻倍!
|
6月前
|
存储 SQL Java
Flink CDC + Hologres高性能数据同步优化实践
本文整理自阿里云高级技术专家胡一博老师在Flink Forward Asia 2024数据集成(二)专场的分享,主要内容包括:1. Hologres介绍:实时数据仓库,支持毫秒级写入和高QPS查询;2. 写入优化:通过改进缓冲队列、连接池和COPY模式提高吞吐量和降低延迟;3. 消费优化:优化离线场景和分区表的消费逻辑,提升性能和资源利用率;4. 未来展望:进一步简化用户操作,支持更多DDL操作及全增量消费。Hologres 3.0全新升级为一体化实时湖仓平台,提供多项新功能并降低使用成本。
479 1
Flink CDC + Hologres高性能数据同步优化实践
|
6月前
|
分布式计算 关系型数据库 MySQL
Flink CDC 3.3.0 发布公告
Flink CDC 3.3.0 发布公告
240 14
|
6月前
|
SQL 弹性计算 DataWorks
Flink CDC 在阿里云 DataWorks 数据集成入湖场景的应用实践
Flink CDC 在阿里云 DataWorks 数据集成入湖场景的应用实践
235 6
|
6月前
|
SQL 人工智能 关系型数据库
Flink CDC YAML:面向数据集成的 API 设计
Flink CDC YAML:面向数据集成的 API 设计
168 5

推荐镜像

更多