【TCN回归预测】基于TCN时间卷积神经网络实现数据多输入回归预测附matlab代码

简介: 【TCN回归预测】基于TCN时间卷积神经网络实现数据多输入回归预测附matlab代码

✅作者简介:热爱科研的Matlab仿真开发者,修心和技术同步精进,matlab项目合作可私信。

🍎个人主页:Matlab科研工作室

🍊个人信条:格物致知。

更多Matlab仿真内容点击👇

智能优化算法  神经网络预测雷达通信 无线传感器

信号处理图像处理路径规划元胞自动机无人机 电力系统

⛄ 内容介绍

时间卷积网络(TemporalConvolutionalNetwork,TCN)是一种特殊的卷积神经网络(CNN).

① TCN结构中的卷积具有因果关系,如图3(a)所示,数据的传递是单向的,即每层的信息只依赖于之前层的信息。

② 传统卷积神经网络对时间的建模长度受限于卷积核的大小,需要堆叠较多层来抓取更长的依赖关系。

为解决该问题,如图3(b)所示,TCN采用膨胀卷积,即在因果卷积的基础上间隔采样输入。膨胀卷积使得输入信息量随层数的增加呈指数型增长,卷积网络就可以凭借较少的层来获得足够大的感受野。

⛄ 部分代码

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%     This is a function to define the layers and parameters of the CNN    %%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%


function [layers, options] = raceNetFun(inputSize, tbl, augmentedTestSet, ep)

layers = [

   imageInputLayer([inputSize 3])

   

   convolution2dLayer(11,4,'Padding','same')

   batchNormalizationLayer

   reluLayer

   

   maxPooling2dLayer(2,'Stride',2)

   

   convolution2dLayer(7,8,'Padding','same')

   batchNormalizationLayer

   reluLayer

   

   maxPooling2dLayer(2,'Stride',2)

   

   convolution2dLayer(5,16,'Padding','same')

   batchNormalizationLayer

   reluLayer

   

   maxPooling2dLayer(2,'Stride',2)

   

   convolution2dLayer(3,64,'Padding','same')

   batchNormalizationLayer

   reluLayer    

   fullyConnectedLayer(height(tbl))

   softmaxLayer

   classificationLayer];

options = trainingOptions('adam', ...

   'InitialLearnRate',1e-2, ...

   'LearnRateSchedule','piecewise', ...

   'LearnRateDropFactor',0.5, ...

   'LearnRateDropPeriod',5, ...

   'MaxEpochs',ep, ...

   'Shuffle','every-epoch', ...

   'ValidationData',augmentedTestSet, ...

   'ValidationFrequency',10, ...

   'MiniBatchSize', 64, ...

   'Verbose',false, ...

   'Plots','training-progress');

end

 

⛄ 运行结果

⛄ 参考文献

[1]冯达智. 基于时间卷积网络的飞控时序数据预测技术研究[D]. 电子科技大学.

⛄ 完整代码

❤️部分理论引用网络文献,若有侵权联系博主删除
❤️ 关注我领取海量matlab电子书和数学建模资料


相关文章
|
3月前
|
算法 定位技术 计算机视觉
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
【水下图像增强】基于波长补偿与去雾的水下图像增强研究(Matlab代码实现)
173 0
|
3月前
|
机器学习/深度学习 算法 机器人
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
使用哈里斯角Harris和SIFT算法来实现局部特征匹配(Matlab代码实现)
209 8
|
3月前
|
机器学习/深度学习 编解码 算法
基于OFDM技术的水下声学通信多径信道图像传输研究(Matlab代码实现)
基于OFDM技术的水下声学通信多径信道图像传输研究(Matlab代码实现)
222 8
|
3月前
|
机器学习/深度学习 算法 机器人
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
【水下图像增强融合算法】基于融合的水下图像与视频增强研究(Matlab代码实现)
382 0
|
3月前
|
算法 机器人 计算机视觉
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
【图像处理】水下图像增强的颜色平衡与融合技术研究(Matlab代码实现)
143 0
|
3月前
|
新能源 Java Go
【EI复现】参与调峰的储能系统配置方案及经济性分析(Matlab代码实现)
【EI复现】参与调峰的储能系统配置方案及经济性分析(Matlab代码实现)
146 0
|
3月前
|
机器学习/深度学习 数据采集 测试技术
基于CEEMDAN-VMD-BiLSTM的多变量输入单步时序预测研究(Matlab代码实现)
基于CEEMDAN-VMD-BiLSTM的多变量输入单步时序预测研究(Matlab代码实现)
131 8
|
3月前
|
机器学习/深度学习 算法 自动驾驶
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
基于导向滤波的暗通道去雾算法在灰度与彩色图像可见度复原中的研究(Matlab代码实现)
221 8
|
3月前
|
编解码 运维 算法
【分布式能源选址与定容】光伏、储能双层优化配置接入配电网研究(Matlab代码实现)
【分布式能源选址与定容】光伏、储能双层优化配置接入配电网研究(Matlab代码实现)
204 12
|
3月前
|
人工智能 数据可视化 网络性能优化
【顶级SCI复现】虚拟电厂的多时间尺度调度:在考虑储能系统容量衰减的同时,整合发电与多用户负荷的灵活性研究(Matlab代码实现)
【顶级SCI复现】虚拟电厂的多时间尺度调度:在考虑储能系统容量衰减的同时,整合发电与多用户负荷的灵活性研究(Matlab代码实现)
163 9

热门文章

最新文章