运筹优化学习23:单因素方差分析理论及Matlab代码实现(上)

简介: 运筹优化学习23:单因素方差分析理论及Matlab代码实现

今天有兴趣学习了一下单因素方差分析,在此做一个总结,希望对后来者有用

文章参考了以下博客文章:

举例分析方差分析ANOVA

1 理论基础

单因素方差分析是研究影响某个指标的单个因素在不同水平下的相关性的重要方法,下面是几个重要概念:

1.1 基础概念

1.1.1 示例

如我们要研究饮料颜色与饮料销售量的关系,那么:

  • 饮料销售量就是我们要观测的试验指标
  • 饮料颜色表示的是影响饮料销售量的因素
  • 因素的具体体现为多种水平,即橘黄色、粉色、绿色和无色透明
  • 每个水平要要进行多组观测,如在不同的超市进行


aHR0cHM6Ly91cGxvYWQtaW1hZ2VzLmppYW5zaHUuaW8vdXBsb2FkX2ltYWdlcy8xMTA5ODI1OC04ZDA0OTJiNmY2Mzk0YzY1LnBuZw.png

从表中看到,20个数据各不相同,其原因可能有两个方面:


一是销售地点不同的影响。即使是相同颜色的饮料,在不同超市的销售量也是不同的。但是,由于这五个超市地理位置相似、经营规模相仿,因此,可以把不同地点产品销售量的差异看成是随机因素的影响。

二是饮料颜色不同的影响。即使在同一个超市里,不同颜色的饮料的销售量也是不同的。哪怕它们的营养成分、味道、价格、包装等方面的因素都相同,但销售量也不相同。这种不同,有可能是由于抽样的随机性造成的,也有可能是由于人们对不同颜色的偏爱造成的。

   于是,上述问题就归结为检验饮料颜色对销售量是否有影响的问题。我们可以令μ1、μ2、μ3、μ4分别为四种颜色饮料的平均销售量,检验它们是否相等。如果检验结果显示μ1、μ2、μ3、μ4不相等,则意味着不同颜色的饮料来自于不同的总体,表明饮料颜色对销售量有影响;反之,如果检验结果显示μ1、μ2、μ3、μ4之间不存在显著性差异,则意味着不同颜色的饮料来自于相同的总体,可认为饮料颜色对销售量没有影响。

1.1.2 分析

从方差分析的目的来看,是要检验各个水平的均值μ1、μ2、…、μm是否相等(m为水平个数),而实现这个目的的手段是通过方差的比较(即考察各观察数据的差异)。在变量的观察值之间存在着差异。


差异的产生来自于两个方面。一个方面是由因素中的不同水平造成的,称之为系统性差异(或系统性误差)。如:饮料的不同颜色带来不同的销售量。另一个方面是由于抽选样本的随机性而产生的差异,称之为随机性差异(或随机性误差)。如:相同颜色的饮料在不同的商场销售量也不同。


两个方面产生的差异可以用两个方差来计量。

   一个叫组间方差,即水平之间的方差,是衡量不同总体下各样本之间差异的方差。在组间方差里,既包括系统性误差,也包括随机性误差。如:在例1中,不同颜色的饮料在不同地点(超市)产品销售量之间的差异既有系统性误差(即由于人们对不同颜色的偏爱造成的差异),也有随机性误差(即由于抽样的随机性造成的差异)。不同颜色的饮料在不同地点(超市)产品销售量之间的方差即为组间方差。

   另一个叫组内方差,即水平内部的方差,是衡量同一个总体下样本数据的方差。在组内方差里仅包括随机性差异。如:在例1中,可以把同一个颜色的饮料在不同地点(超市)产品销售量之间的差异看成是随机因素的影响,同一个颜色的饮料在不同地点(超市)产品销售量之间的方差即为组内方差。


   如果不同的水平对结果没有影响,如: 饮料的不同颜色对销售量无影响,那么在水平之间的方差中,就仅仅有随机因素影响的差异,而没有系统性因素影响的差异。这样一来,组间方差与组内方差就应该非常接近,两个方差的比值就会接近于1;反之,如果饮料的不同颜色对销售量有影响,在组间方差中就不仅包括了随机性误差,也包括了系统性误差,这时,组间方差就会大于组内方差,两个方差的比值就会大于1。当这个比值大到某种程度时,我们就可以作出判断,说不同水平之间存在着显著性差异。一次,方差分析就是通过不同方差的比较,作出接受原假设或拒绝原假设的判断。如:例子中,判断饮料的不同颜色对销售量是否有显著性影响的问题,实际上也就是检验销售量的差异主要是由于什么原因所引起的。如果这种差异主要是系统性误差,我们就说饮料的不同颜色对销售量有显著性影响。


1.2 理论公式

image.png

image.png


上述参数根据公式即可十分方便的计算出,但是F值和P值需要查表

1.3  手算示例

第一步、建立假设

原假设 H0:μ1=μ2=μ3=μ4;即假设颜色对销售量没有影响。

备择假设H1: μ1、μ2、μ3、μ4不全相等;即假设四个配方颜色对销售量有影响。

第二步、计算水平均值

无色饮料销售量均值=136.6÷5=27.32箱

粉色饮料销售量均值=147.8÷5=29.56箱

桔黄色饮料销售量均值=132.2÷5=26.44箱

绿色饮料销售量均值=157.3÷5=31.46箱

第三步、计算全部观察值的总均值

各种颜色饮料销售量总的样本平均数=(136.6+147.8+132.2+157.3)÷20=28.695箱

第四步、计算离差平方和

20200415220555496.png

20200415220540325.png


第五步、构造统计量并计算检验统计量的样本值

20200415220650130.png

第六步、确定检验规则、列出方差分析表、做出统计决策

P-值规则:


根据算得的检验统计量的样本值(F值)算出P-值=0.000466。由于P-值=0.000495<显著水平标准=0.05,所以拒绝H0,接受备择假设H1,即通过检验知,μj不全相等,说明饮料的颜色对销售量有显著影响。


F值规则:


根据给定的显著水平a=0.05,查表得临界值为3.24。因为F=10.486>3.24,检验统计量的样本值落入拒绝域,所以拒绝H0,接受备择假设H1,即通过检验知,μj不全相等,说明饮料的颜色对销售量有显著影响。

20200415221231695.png

p值大于显著水平,支持原假设,F值大于临界值(由显著水平得到),拒绝原假设。



相关文章
|
10天前
|
机器学习/深度学习 算法
基于改进遗传优化的BP神经网络金融序列预测算法matlab仿真
本项目基于改进遗传优化的BP神经网络进行金融序列预测,使用MATLAB2022A实现。通过对比BP神经网络、遗传优化BP神经网络及改进遗传优化BP神经网络,展示了三者的误差和预测曲线差异。核心程序结合遗传算法(GA)与BP神经网络,利用GA优化BP网络的初始权重和阈值,提高预测精度。GA通过选择、交叉、变异操作迭代优化,防止局部收敛,增强模型对金融市场复杂性和不确定性的适应能力。
143 80
|
6天前
|
算法
基于PSO粒子群优化的配电网可靠性指标matlab仿真
本程序基于PSO粒子群优化算法,对配电网的可靠性指标(SAIFI、SAIDI、CAIDI、ENS)进行MATLAB仿真优化。通过调整电网结构和设备配置,最小化停电频率和时长,提高供电连续性和稳定性。程序在MATLAB 2022A版本上运行,展示了优化前后指标的变化。PSO算法模拟鸟群行为,每个粒子代表一个潜在解决方案,通过迭代搜索全局最优解,实现配电网的高效优化设计。
|
3天前
|
机器学习/深度学习 算法
基于遗传优化的双BP神经网络金融序列预测算法matlab仿真
本项目基于遗传优化的双BP神经网络实现金融序列预测,使用MATLAB2022A进行仿真。算法通过两个初始学习率不同的BP神经网络(e1, e2)协同工作,结合遗传算法优化,提高预测精度。实验展示了三个算法的误差对比结果,验证了该方法的有效性。
|
6天前
|
机器学习/深度学习 数据采集 算法
基于PSO粒子群优化的CNN-GRU-SAM网络时间序列回归预测算法matlab仿真
本项目展示了基于PSO优化的CNN-GRU-SAM网络在时间序列预测中的应用。算法通过卷积层、GRU层、自注意力机制层提取特征,结合粒子群优化提升预测准确性。完整程序运行效果无水印,提供Matlab2022a版本代码,含详细中文注释和操作视频。适用于金融市场、气象预报等领域,有效处理非线性数据,提高预测稳定性和效率。
|
7天前
|
机器学习/深度学习 算法 索引
单目标问题的烟花优化算法求解matlab仿真,对比PSO和GA
本项目使用FW烟花优化算法求解单目标问题,并在MATLAB2022A中实现仿真,对比PSO和GA的性能。核心代码展示了适应度计算、火花生成及位置约束等关键步骤。最终通过收敛曲线对比三种算法的优化效果。烟花优化算法模拟烟花爆炸过程,探索搜索空间,寻找全局最优解,适用于复杂非线性问题。PSO和GA则分别适合快速收敛和大解空间的问题。参数调整和算法特性分析显示了各自的优势与局限。
|
28天前
|
算法
基于WOA鲸鱼优化的购售电收益与风险评估算法matlab仿真
本研究提出了一种基于鲸鱼优化算法(WOA)的购售电收益与风险评估算法。通过将售电公司购售电收益风险计算公式作为WOA的目标函数,经过迭代优化计算出最优购电策略。实验结果表明,在迭代次数超过10次后,风险价值收益优化值达到1715.1万元的最大值。WOA还确定了中长期市场、现货市场及可再生能源等不同市场的最优购电量,验证了算法的有效性。核心程序使用MATLAB2022a实现,通过多次迭代优化,实现了售电公司收益最大化和风险最小化的目标。
|
28天前
|
算法
通过matlab对比遗传算法优化前后染色体的变化情况
该程序使用MATLAB2022A实现遗传算法优化染色体的过程,通过迭代选择、交叉和变异操作,提高染色体适应度,优化解的质量,同时保持种群多样性,避免局部最优。代码展示了算法的核心流程,包括适应度计算、选择、交叉、变异等步骤,并通过图表直观展示了优化前后染色体的变化情况。
|
5月前
|
安全
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
本文介绍了2023年高教社杯数学建模竞赛D题的圈养湖羊空间利用率问题,包括问题分析、数学模型建立和MATLAB代码实现,旨在优化养殖场的生产计划和空间利用效率。
241 6
【2023高教社杯】D题 圈养湖羊的空间利用率 问题分析、数学模型及MATLAB代码
|
5月前
|
存储 算法 搜索推荐
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
本文提供了2022年华为杯数学建模竞赛B题的详细方案和MATLAB代码实现,包括方形件组批优化问题和排样优化问题,以及相关数学模型的建立和求解方法。
145 3
【2022年华为杯数学建模】B题 方形件组批优化问题 方案及MATLAB代码实现
|
5月前
|
数据采集 存储 移动开发
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码
本文介绍了2023年五一杯数学建模竞赛B题的解题方法,详细阐述了如何通过数学建模和MATLAB编程来分析快递需求、预测运输数量、优化运输成本,并估计固定和非固定需求,提供了完整的建模方案和代码实现。
113 0
【2023五一杯数学建模】 B题 快递需求分析问题 建模方案及MATLAB实现代码

热门文章

最新文章