使用Spark 编码 写入 hive 的过程中 hive字段乱码 [解决方案]

本文涉及的产品
云数据库 RDS MySQL,集群系列 2核4GB
推荐场景:
搭建个人博客
RDS MySQL Serverless 基础系列,0.5-2RCU 50GB
RDS MySQL Serverless 高可用系列,价值2615元额度,1个月
简介: 由于元数据中的表结构中包含中文,我在抽取到spark过程中已经解决了一次乱码问题,具体显示为问题????,解决方法是在mysql连接上加参数spark 字段乱码

由于元数据中的表结构中包含中文,我在抽取到spark过程中已经解决了一次乱码问题,具体显示为问题????,解决方法是在mysql连接上加参数

spark 字段乱码

  def readMysql(sparkSession: SparkSession,table: String): DataFrame = {
    val frame: DataFrame = sparkSession
      .read
      .format("jdbc")
      .option("url", "jdbc:mysql://master:3306/hotel?useSSL=false&characterEncoding=utf8")
      .option("dbtable", table)
      .option("user", "root")
      .option("password", "123456")
      .option("driver", "com.mysql.jdbc.Driver").load()
    frame
  }

读取mysql成功解决乱码


我经过清洗之后,准备写入到hive中,等我写完后,我以为完活啦,可是没想到等我再次使用数据的时候,个别字段值全是null,我在hive查看过数据之后又看表结构,发现表结构中中文是乱码的,我猜想,这应该就导致了字段值无法插入对应字段的结果,找不到对应的字段了,因为乱码了。

开始了我的网上冲浪,最后因为我是字段乱码,我翻阅了很多不管用的资料。


好啦,把解决方法给阿大家整理了出来啦

hive字段乱码 [解决方案]

登录hive元数据库 mysql

use hive;

修改表字段注释编码和表字段编码

alter table COLUMNS_V2 modify column COMMENT varchar(256) character set utf8;
alter table TABLE_PARAMS modify column PARAM_VALUE varchar(4000) character set utf8;

修改分区字段编码

alter table PARTITION_PARAMS modify column PARAM_VALUE varchar(4000) character set utf8;
alter table PARTITION_KEYS modify column PKEY_COMMENT varchar(4000) character set utf8;
alter table INDEX_PARAMS modify column PARAM_VALUE varchar(4000) character set utf8;
-- 注意选择对应的元数据存储数据库
use hive_db;
-- 修改表字段注释字符集
ALTER TABLE COLUMNS_V2 MODIFY COLUMN `COMMENT` varchar(256) CHARACTER SET utf8;
-- 修改表字段名字符集
ALTER TABLE COLUMNS_V2 MODIFY COLUMN `COLUMN_NAME` varchar(767) CHARACTER SET utf8;
-- 修改表属性Key和Value字符集
ALTER TABLE TABLE_PARAMS MODIFY COLUMN `PARAM_VALUE` varchar(4000) CHARACTER SET utf8;
ALTER TABLE TABLE_PARAMS MODIFY COLUMN `PARAM_KEY` varchar(256) CHARACTER SET utf8;
-- 修改分区属性Key和Value字符集
ALTER TABLE PARTITION_PARAMS MODIFY COLUMN `PARAM_KEY` varchar(256) CHARACTER SET utf8;
ALTER TABLE PARTITION_PARAMS MODIFY COLUMN `PARAM_VALUE` varchar(4000) CHARACTER SET utf8;
-- 修改分区字段Key和Value字符集
ALTER TABLE PARTITION_KEYS MODIFY COLUMN `PKEY_COMMENT` varchar(4000) CHARACTER SET utf8;
ALTER TABLE PARTITION_KEY_VALS MODIFY COLUMN `PART_KEY_VAL` varchar(256) CHARACTER SET utf8;
-- 修改分区的分区名字符集
ALTER TABLE `PARTITIONS` MODIFY COLUMN `PART_NAME` varchar(767) CHARACTER SET utf8;
-- 修改索引属性Key和Value字符集
ALTER TABLE INDEX_PARAMS MODIFY COLUMN `PARAM_KEY` varchar(256) CHARACTER SET utf8;
ALTER TABLE INDEX_PARAMS MODIFY COLUMN `PARAM_VALUE` varchar(4000) CHARACTER SET utf8;

修改hive配置文件

<property>
  <name>javax.jdo.option.ConnectionURL</name>
  <value>jdbc:mysql://hadoop-3/hive?createDatabaseIfNotExist=true&amp;useUnicode=true&amp;characterEncoding=UTF-8</value>
</property>

重启hive生效

nohup hive --service metastore &
相关实践学习
如何在云端创建MySQL数据库
开始实验后,系统会自动创建一台自建MySQL的 源数据库 ECS 实例和一台 目标数据库 RDS。
全面了解阿里云能为你做什么
阿里云在全球各地部署高效节能的绿色数据中心,利用清洁计算为万物互联的新世界提供源源不断的能源动力,目前开服的区域包括中国(华北、华东、华南、香港)、新加坡、美国(美东、美西)、欧洲、中东、澳大利亚、日本。目前阿里云的产品涵盖弹性计算、数据库、存储与CDN、分析与搜索、云通信、网络、管理与监控、应用服务、互联网中间件、移动服务、视频服务等。通过本课程,来了解阿里云能够为你的业务带来哪些帮助 &nbsp; &nbsp; 相关的阿里云产品:云服务器ECS 云服务器 ECS(Elastic Compute Service)是一种弹性可伸缩的计算服务,助您降低 IT 成本,提升运维效率,使您更专注于核心业务创新。产品详情: https://www.aliyun.com/product/ecs
目录
相关文章
|
3月前
|
SQL 数据采集 存储
Hive 判断某个字段长度
【8月更文挑战第13天】
|
1月前
|
SQL 分布式计算 Java
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
大数据-96 Spark 集群 SparkSQL Scala编写SQL操作SparkSQL的数据源:JSON、CSV、JDBC、Hive
36 0
|
3月前
|
SQL 存储 分布式计算
|
4月前
|
SQL DataWorks 监控
DataWorks产品使用合集之同步数据到Hive时,如何使用业务字段作为分区键
DataWorks作为一站式的数据开发与治理平台,提供了从数据采集、清洗、开发、调度、服务化、质量监控到安全管理的全套解决方案,帮助企业构建高效、规范、安全的大数据处理体系。以下是对DataWorks产品使用合集的概述,涵盖数据处理的各个环节。
|
5月前
|
SQL 分布式计算 HIVE
实时计算 Flink版产品使用问题之同步到Hudi的数据是否可以被Hive或Spark直接读取
实时计算Flink版作为一种强大的流处理和批处理统一的计算框架,广泛应用于各种需要实时数据处理和分析的场景。实时计算Flink版通常结合SQL接口、DataStream API、以及与上下游数据源和存储系统的丰富连接器,提供了一套全面的解决方案,以应对各种实时计算需求。其低延迟、高吞吐、容错性强的特点,使其成为众多企业和组织实时数据处理首选的技术平台。以下是实时计算Flink版的一些典型使用合集。
|
5月前
|
SQL 分布式计算 大数据
MaxCompute产品使用合集之启用hive兼容的时候,某个字段是null,是否会把这个字段当成空白连起来
MaxCompute作为一款全面的大数据处理平台,广泛应用于各类大数据分析、数据挖掘、BI及机器学习场景。掌握其核心功能、熟练操作流程、遵循最佳实践,可以帮助用户高效、安全地管理和利用海量数据。以下是一个关于MaxCompute产品使用的合集,涵盖了其核心功能、应用场景、操作流程以及最佳实践等内容。
|
5月前
|
SQL 分布式计算 NoSQL
使用Spark高效将数据从Hive写入Redis (功能最全)
使用Spark高效将数据从Hive写入Redis (功能最全)
378 1
|
6月前
|
SQL Serverless HIVE
Hive 求多个字段的中位数(按行求中位数)
在项目中遇到按行求中位数的Hive需求,本文通过创建测试数据,展示解决方案。首先使用`lateral view`和`explode`将多字段行转为列,然后通过`percentile`函数计算每行数据的中位数,最终得到结果。该方法适用于将行转为列处理复杂需求,欢迎探讨更优解。
109 4
|
20天前
|
分布式计算 大数据 Apache
ClickHouse与大数据生态集成:Spark & Flink 实战
【10月更文挑战第26天】在当今这个数据爆炸的时代,能够高效地处理和分析海量数据成为了企业和组织提升竞争力的关键。作为一款高性能的列式数据库系统,ClickHouse 在大数据分析领域展现出了卓越的能力。然而,为了充分利用ClickHouse的优势,将其与现有的大数据处理框架(如Apache Spark和Apache Flink)进行集成变得尤为重要。本文将从我个人的角度出发,探讨如何通过这些技术的结合,实现对大规模数据的实时处理和分析。
55 2
ClickHouse与大数据生态集成:Spark & Flink 实战
|
1月前
|
存储 分布式计算 算法
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
大数据-106 Spark Graph X 计算学习 案例:1图的基本计算、2连通图算法、3寻找相同的用户
60 0