IPDAE: Improved Patch-Based Deep Autoencoder for Lossy Point Cloud Geometry Compression

简介:

IPDAE: Improved Patch-Based Deep Autoencoder for Lossy Point Cloud Geometry Compression

目录
打赏
0
0
0
0
2
分享
相关文章
文献解读-Pathogenic variants carrier screening in New Brunswick: Acadians reveal high carrier frequency for multiple genetic disorders
研究首次对新不伦瑞克省阿卡迪亚人进行致病变异携带者筛查,发现某些基因变异频率显著高于一般欧洲人群,表明存在创始人效应。这突出了对阿卡迪亚人进行更全面遗传筛查的必要性。
42 12
【文献学习】Channel Estimation Method Based on Transformer in High Dynamic Environment
一种基于CNN和Transformer的信道估计方法,用于在高度动态环境中跟踪信道变化特征,并通过实验结果展示了其相比传统方法的性能提升。
102 0
[Initial Image Segmentation Generator]论文实现:Efficient Graph-Based Image Segmentation
[Initial Image Segmentation Generator]论文实现:Efficient Graph-Based Image Segmentation
101 1
论文解读:LaMa:Resolution-robust Large Mask Inpainting with Fourier Convolutions
论文解读:LaMa:Resolution-robust Large Mask Inpainting with Fourier Convolutions
910 0
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
71 1
PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
PointNet++:Deep Hierarchical Feature Learning on Points Sets in a Metrci Space 学习笔记
PointNet++:Deep Hierarchical Feature Learning on Points Sets in a Metrci Space 学习笔记
98 0
Deep learning based multi-scale channel compression feature surface defect detection system
简述:首先应用背景分割和模板匹配技术来定义覆盖目标工件的ROI区域。提取的感兴趣区域被均匀地裁剪成若干个图像块,每个块被送到基于CNN的模型,以分类杂乱背景中不同大小的表面缺陷。最后,对空间上相邻且具有相同类别标签的图像块进行合并,以生成各种表面缺陷的识别图。
189 0